-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcode.py
134 lines (112 loc) · 4.81 KB
/
code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import cv2
import imutils
import numpy as np
import pyautogui
pyautogui.FAILSAFE = False
from sklearn.metrics import pairwise
from collections import Counter
bg = None
#-------------------------------------------------------------------------------
# Function - To find the running average over the background
#-------------------------------------------------------------------------------
def run_avg(image, accumWeight):
global bg
if bg is None:
bg = image.copy().astype("float")
return
cv2.accumulateWeighted(image, bg, accumWeight)
#-------------------------------------------------------------------------------
# Function - To segment the region of hand in the image
#-------------------------------------------------------------------------------
def segment(image, threshold=25):
global bg
diff = cv2.absdiff(bg.astype("uint8"), image)
thresholded = cv2.threshold(diff, threshold, 255, cv2.THRESH_BINARY)[1]
(_, cnts, _) = cv2.findContours(thresholded.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if len(cnts) == 0:
return
else:
segmented = max(cnts, key=cv2.contourArea)
return (thresholded, segmented)
#-------------------------------------------------------------------------------
# Function - To count the number of fingers in the segmented hand region
#-------------------------------------------------------------------------------
l = []
p = []
def count(thresholded, segmented):
chull = cv2.convexHull(segmented)
extreme_top = tuple(chull[chull[:, :, 1].argmin()][0])
extreme_bottom = tuple(chull[chull[:, :, 1].argmax()][0])
extreme_left = tuple(chull[chull[:, :, 0].argmin()][0])
extreme_right = tuple(chull[chull[:, :, 0].argmax()][0])
if extreme_left[1] > extreme_right[1]:
print("right")
p.append(0)
else:
print("left")
p.append(1)
cX = int((extreme_left[0] + extreme_right[0]) / 2)
cY = int((extreme_top[1] + extreme_bottom[1]) / 2)
distance = pairwise.euclidean_distances([(cX, cY)], Y=[extreme_left, extreme_right, extreme_top, extreme_bottom])[0]
maximum_distance = distance[distance.argmax()]
radius = int(0.5 * maximum_distance)
circumference = (2 * np.pi * radius)
circular_roi = np.zeros(thresholded.shape[:2], dtype="uint8")
cv2.circle(circular_roi, (cX, cY), radius, 255, 1)
circular_roi = cv2.bitwise_and(thresholded, thresholded, mask=circular_roi)
(_, cnts, _) = cv2.findContours(circular_roi.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
count = 0
for c in cnts:
(x, y, w, h) = cv2.boundingRect(c)
if ((cY + (cY * 0.25)) > (y + h)) and ((circumference * 0.25) > c.shape[0]):
count += 1
l.append(count)
return(l)
#-------------------------------------------------------------------------------
# Main function
#-------------------------------------------------------------------------------
if __name__ == "__main__":
accumWeight = 0.5
camera = cv2.VideoCapture(0)
top, right, bottom, left = 10, 350, 225, 590
num_frames = 0
calibrated = False
while(True):
#checks whether the hand is lef or right
if len(p) >= 40:
if p[34] == 0:
pyautogui.press("left")
p = []
else:
pyautogui.press("right")
p = []
(grabbed, frame) = camera.read()
frame = imutils.resize(frame, width=700)
frame = cv2.flip(frame, 1)
clone = frame.copy()
(height, width) = frame.shape[:2]
roi = frame[top:bottom, right:left]
gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (7, 7), 0)
if num_frames < 30:
run_avg(gray, accumWeight)
if num_frames == 1:
print("[STATUS] please wait! calibrating...")
elif num_frames == 29:
print("[STATUS] calibration successfull...")
else:
hand = segment(gray)
if hand is not None:
(thresholded, segmented) = hand
cv2.drawContours(clone, [segmented + (right, top)], -1, (0, 0, 255))
fingers = count(thresholded, segmented)
cv2.putText(clone, str(fingers), (70, 45), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2)
cv2.imshow("Thesholded", thresholded)
cv2.rectangle(clone, (left, top), (right, bottom), (0,255,0), 2)
num_frames += 1
cv2.imshow("Video Feed", clone)
keypress = cv2.waitKey(1) & 0xFF
if keypress == ord("q"):
break
camera.release()
cv2.destroyAllWindows()