-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlattice_gpu_naive.py
187 lines (161 loc) · 5.23 KB
/
lattice_gpu_naive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import time as tm
import numpy as np
from math import sin, pi
from numba import cuda
from matplotlib.pyplot import imsave, imshow
# Flow definition
nx, ny = 420, 180
uLB = 0.04
Re = 150.0
nulb = uLB*(ny//9)/Re
omega = 1 / (3*nulb+0.5)
v = cuda.to_device([
[1,1], [1,0], [1,-1],
[0,1], [0,0], [0,-1],
[-1,1], [-1,0], [-1,-1]
])
t = cuda.to_device([
1/36, 1/9, 1/36,
1/9, 4/9, 1/9,
1/36, 1/9, 1/36
])
col1 = np.array([0, 1, 2])
col2 = np.array([3, 4, 5])
col3 = np.array([6, 7, 8])
# CUDA setup
threadsperblock = (16, 8)
blockspergrid_x = int(np.ceil(nx / threadsperblock[0]))
blockspergrid_y = int(np.ceil(ny / threadsperblock[1]))
blockspergrid = (blockspergrid_x, blockspergrid_y)
@cuda.jit
def initvel(out):
x, y = cuda.grid(2)
if x < nx and y < ny:
out[0,x,y] = uLB * (1 + 1e-4*sin(y/(ny-1)*2*pi))
out[1,x,y] = 0
@cuda.jit
def equilibrium(out, rho, u, v, t):
x, y = cuda.grid(2)
if x < nx and y < ny:
u0, u1 = u[0,x,y], u[1,x,y]
usqr = 3/2 * (u0**2 + u1**2)
for i in range(9):
cu = 3 * (v[i,0] * u0 + v[i,1] * u1)
out[i,x,y] = rho[x,y] * t[i] * (1 + cu + 0.5*cu**2 - usqr)
@cuda.jit
def post_equilibrium(fin, feq):
x, y = cuda.grid(2)
if x == 0 and y < ny:
for i in range(3):
fin[i,x,y] = feq[i,x,y] + fin[8-i,x,y] - feq[8-i,x,y]
@cuda.jit
def rho_clc(out, fin):
x, y = cuda.grid(2)
if x < nx and y < ny:
temp = 0
for i in range(9):
temp += fin[i,x,y]
out[x,y] = temp
@cuda.jit
def macroscopic(out, fin, rho, v):
x, y = cuda.grid(2)
if x < nx and y < ny:
temp1, temp2 = 0, 0
for i in range(9):
temp1 += v[i,0] * fin[i,x,y]
temp2 += v[i,1] * fin[i,x,y]
out[0,x,y] = temp1 / rho[x,y]
out[1,x,y] = temp2 / rho[x,y]
@cuda.jit
def outflow(fin):
x, y = cuda.grid(2)
if x == nx-1 and y < ny:
for i in col3:
fin[i,x,y] = fin[i,x-1,y]
@cuda.jit
def inflow(u, rho, vel, fin):
x, y = cuda.grid(2)
if x == 0 and y < ny:
u[0,x,y] = vel[0,x,y]
u[1,x,y] = vel[1,x,y]
temp = 0
for c in col2:
temp += fin[c,x,y]
for c in col3:
temp += 2*fin[c,x,y]
rho[x,y] = 1/(1-vel[0,x,y]) * temp
@cuda.jit
def collision(out, fin, feq):
x, y = cuda.grid(2)
if x < nx and y < ny:
for i in range(9):
out[i,x,y] = fin[i,x,y] - omega * (fin[i,x,y] - feq[i,x,y])
@cuda.jit
def bounce(fout, fin):
x, y = cuda.grid(2)
if x < nx and y < ny:
cx = nx // 4
cy = ny // 2
r = ny // 9
if ((x-cx)**2 + (y-cy)**2) < (r**2):
for i in range(9):
fout[i,x,y] = fin[8-i,x,y]
@cuda.jit
def stream(fin, fout, v):
x, y = cuda.grid(2)
if x < nx and y < ny:
for i in range(9):
fin[i,x,y] = fout[i, (x-v[i,0]) % nx, (y-v[i,1]) % ny]
def main(maxIter, saveat, notebook=False):
if not notebook:
print("Initializing Simulation...")
fin = cuda.device_array((9,nx,ny))
feq = cuda.device_array((9,nx,ny))
fout = cuda.device_array((9,nx,ny))
rho = cuda.to_device(np.ones((nx,ny)))
vel = cuda.device_array((2,nx,ny))
u = cuda.device_array((2,nx,ny))
# init velocity field
initvel[blockspergrid, threadsperblock](vel)
# init equilibrium
equilibrium[blockspergrid, threadsperblock](fin, rho, vel, v, t)
if not notebook:
print("Starting Simulation...")
figures = {}
start = tm.time()
for time in range(maxIter):
# outflow conditions
outflow[blockspergrid, threadsperblock](fin)
# new Rho val
rho_clc[blockspergrid, threadsperblock](rho, fin)
# macro vel/density
macroscopic[blockspergrid, threadsperblock](u, fin, rho, v)
# inflow conditions
inflow[blockspergrid, threadsperblock](u, rho, vel, fin)
# equilibrium state re-compute
equilibrium[blockspergrid, threadsperblock](feq, rho, u, v, t)
post_equilibrium[blockspergrid, threadsperblock](fin, feq)
# collision compute
collision[blockspergrid, threadsperblock](fout, fin, feq)
# obstacle bounce-back
bounce[blockspergrid, threadsperblock](fout, fin)
# streaming to next iter
stream[blockspergrid, threadsperblock](fin, fout, v)
# Recording timestamp velocity
if (not notebook and time % saveat == 0):
fluid = u.copy_to_host()
fig = np.sqrt(fluid[0]**2 + fluid[1]**2).transpose()
figures[time//saveat] = fig
if not notebook:
end = tm.time()
print("Ended in %d seconds." % (end - start))
print("Saving simulation's visuals...")
for inst, fig in figures.items():
imsave("gpu_out/vel.{0:04d}.png".format(inst), fig, cmap="autumn")
print("DONE! Check ./gpu_out folder for progress visuals.")
else:
fluid = u.copy_to_host()
figure = np.sqrt(fluid[0]**2 + fluid[1]**2).transpose()
imshow(figure, cmap="autumn")
if __name__ == "__main__":
main(20000, 1000)