-
Notifications
You must be signed in to change notification settings - Fork 3
/
run_statistics_armtd_3d.py
221 lines (196 loc) · 9.01 KB
/
run_statistics_armtd_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import argparse
import numpy as np
import time
import json
from tqdm import tqdm
from training.utils import set_random_seed
from planning.rdf_3d import RDF_3D_Planner
from planning.armtd_3d import ARMTD_3D_planner
from planning.sdf_3d import SDF_3D_Planner
from environments.wrappers.monitoring.video_recorder import VideoRecorder
import os
def evaluate_planner(planner, planner_name='rdf', device='cpu', n_envs=1000, n_steps=150, n_links=7, n_obs=5, record_episodes=False, video=False, buffer_size=0.0, time_limit=0.5):
t_armtd = 0.0
num_success = 0
num_collision = 0
num_no_solution = 0
num_step = 0
t_armtd_list = []
t_success_list = []
t_armtd_optimization_list = []
video_folder = f'planning_videos/{planner_name}/3d{n_links}links'
if record_episodes:
success_episodes = set()
assert 'rdf' in planner_name or 'armtd' in planner_name or 'sdf' in planner_name, f"Only support rdf or armtd, while received {planner_name}"
for i_env in tqdm(range(n_envs)):
set_random_seed(i_env)
env = Arm_3D(n_obs=n_obs, T_len=24, max_episode_steps=n_steps)
t_curr_trial = []
if 'armtd' in planner_name:
planner = ARMTD_3D_planner(env, device=device)
if video:
video_path = os.path.join(
video_folder, f'video{i_env}')
video_recorder = VideoRecorder(
env, video_path, frame_rate=3, format='gif')
was_stuck = False
for i_step in range(n_steps):
ts = time.time()
k0 = torch.zeros(n_links)
if 'rdf' in planner_name or 'sdf' in planner_name:
ka, flag = planner.plan(env, k0, buffer_size=buffer_size, time_limit=time_limit)
elif 'armtd' in planner_name:
ka, flag, t_nlp = planner.plan(env, k0, time_limit=time_limit)
t_armtd_optimization_list.append(t_nlp)
t_elasped = time.time()-ts
t_armtd += t_elasped
t_armtd_list.append(t_elasped)
t_curr_trial.append(t_elasped)
observations, reward, done, info = env.step(ka.cpu(), flag != 0)
if video:
video_recorder.capture_frame()
num_step += 1
if 'collision' in info and info['collision']:
num_collision += 1
break
elif 'is_success' in info and info['is_success']:
num_success += 1
t_success_list += t_curr_trial
if record_episodes:
success_episodes.add(i_env)
break
elif done:
break
if flag != 0:
if was_stuck:
num_step -= 1
break
else:
was_stuck = True
if flag > 0 or flag == -5:
num_no_solution += 1
else:
was_stuck = False
if video:
video_recorder.close(True)
stats = {
'n_trials': n_envs,
'n_links': n_links,
'n_obs':n_obs,
'time_limit': time_limit,
'num_success': num_success,
'num_collision': num_collision,
'mean planning time': np.mean(np.array(t_armtd_list)),
'std planning time': np.std(np.array(t_armtd_list)),
'mean planning time for success trials': np.mean(np.array(t_success_list)),
'std planning time for success trials': np.std(np.array(t_success_list)),
'total planning time': t_armtd,
'num_no_solution': num_no_solution,
'num_step': num_step,
}
if 'rdf' in planner_name or 'sdf' in planner_name:
stats['buffer_size'] = buffer_size
if 'armtd' in planner_name:
stats['mean time for solving optimization'] = np.mean(np.array(t_armtd_optimization_list))
stats['std time for solving optimization'] = np.std(np.array(t_armtd_optimization_list))
# with open(f"planning_results/3d7links{n_obs}obs/{planner_name}_time_3d{n_links}links{n_envs}trials{n_obs}obs{n_steps}steps_{time_limit}limit.npy", 'wb') as f:
# np.save(f, np.array(t_armtd_list))
with open(f"planning_results/3d7links{n_obs}obs/{planner_name}_stats_3d{n_links}links{n_envs}trials{n_obs}obs{n_steps}steps_{time_limit}limit.json", 'w') as f:
if record_episodes:
stats['success_episodes'] = list(success_episodes)
json.dump(stats, f, indent=2)
if record_episodes:
stats['success_episodes'] = success_episodes
return stats
def read_params():
parser = argparse.ArgumentParser(description="Rdf Planning")
# general env setting
parser.add_argument("--planner", type=str, default='both') # rdf, armtd, both
parser.add_argument('--n_links', type=int, default=7)
parser.add_argument('--n_dims', type=int, default=3)
parser.add_argument('--n_obs', type=int, default=5)
parser.add_argument('--n_envs', type=int, default=500)
parser.add_argument('--n_steps', type=int, default=400)
parser.add_argument('--video', action='store_true')
parser.add_argument('--time_limit', type=float, default=0.5)
# model info
parser.add_argument('--model', type=str, default='')
parser.add_argument('--device', type=str, default='cuda:0' if torch.cuda.is_available() else 'cpu')
# optimization info
parser.add_argument('--buffer_size', type=float, default=0.0)
parser.add_argument('--n_sdf_interpolate', type=int, default=100)
# results info
parser.add_argument('--compare', action='store_true')
return parser.parse_args()
if __name__ == '__main__':
torch.backends.cuda.matmul.allow_tf32 = False
from environments.arm_3d import Arm_3D
params = read_params()
planner_name = params.planner
model_path = params.model
if model_path == '' and planner_name == 'rdf':
model_path = 'trained_models/RDF3D/7links/3d-signed-convexhull.pth'
elif model_path == '' and planner_name == 'sdf':
model_path = 'trained_models/SDF3D/7links/3d-signed-convexhull.pth'
device = torch.device(params.device)
print(f"Running {params.n_envs}trials of 3D{params.n_links}Links{params.n_obs}obs with {params.n_steps} step limit and {params.time_limit}s time limit each step")
print(f"Using device {device}")
planning_result_dir = f'planning_results/3d7links{params.n_obs}obs'
if not os.path.exists('planning_results'):
os.mkdir('planning_results')
if not os.path.exists(planning_result_dir):
os.mkdir(planning_result_dir)
stats = {}
if planner_name == 'rdf' or planner_name == 'all' or planner_name == 'both':
if model_path == '':
model_path = 'trained_models/RDF3D/7links/3d-signed-convexhull.pth'
rdf_planner = RDF_3D_Planner(model_path=model_path, device=device, n_links=params.n_links, n_dims=params.n_dims)
stats['rdf'] = evaluate_planner(
planner=rdf_planner,
planner_name=f'rdf_b{params.buffer_size}_t{params.time_limit}',
device=device,
n_envs=params.n_envs,
n_steps=params.n_steps,
n_links=params.n_links,
n_obs=params.n_obs,
record_episodes=params.compare,
video=params.video,
buffer_size=params.buffer_size,
time_limit=params.time_limit,
)
if planner_name == 'sdf' or planner_name == 'all':
if model_path == '':
model_path = 'trained_models/SDF3D_KOPTEV/7links/3d-signed-convexhull.pth'
sdf_planner = SDF_3D_Planner(model_path=model_path, device=device, n_links=params.n_links, n_dims=params.n_dims, n_interpolate=params.n_sdf_interpolate)
stats['sdf'] = evaluate_planner(
planner=sdf_planner,
planner_name=f'sdf_b{params.buffer_size}_t{params.time_limit}_i{params.n_sdf_interpolate}',
device=device,
n_envs=params.n_envs,
n_steps=params.n_steps,
n_links=params.n_links,
n_obs=params.n_obs,
record_episodes=params.compare,
video=params.video,
buffer_size=params.buffer_size,
time_limit=params.time_limit,
)
if planner_name == 'armtd' or planner_name == 'all' or planner_name == 'both':
stats['armtd'] = evaluate_planner(
planner=None,
planner_name=f'armtd_t{params.time_limit}',
device=device,
n_envs=params.n_envs,
n_steps=params.n_steps,
n_links=params.n_links,
n_obs=params.n_obs,
record_episodes=params.compare,
video=params.video,
buffer_size=params.buffer_size,
time_limit=params.time_limit,
)
print(f"statistics: {stats}")
if params.compare and planner_name == 'both':
print(f"The successes of RADAR-ARMTD={stats['rdf']['success_episodes'] - stats['armtd']['success_episodes']}")
print(f"The successes of ARMTD-RADAR={stats['armtd']['success_episodes'] - stats['rdf']['success_episodes']}")