forked from ForeverPs/OPPO_6G_Data_Generation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
70 lines (54 loc) · 2.15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import tqdm
import torch
from model import ResVAE
from eval import online_eval
from torch.optim import Adam
from data import data_pipeline
from torch.optim.lr_scheduler import StepLR
torch.cuda.set_device(0)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def train(epochs, batch_size, data_path, lr, aug_ratio):
data_loader = data_pipeline(data_path, batch_size, aug_ratio)
model = ResVAE()
try:
model.load_state_dict(torch.load(pretrain_path, map_location='cpu'))
except:
print('Training from scratch...')
model = model.to(device)
optimizer = Adam(model.parameters(), lr=lr)
scheduler = StepLR(optimizer, step_size=300, gamma=.5)
best_score = score_thresh
for epoch in range(epochs):
epoch_loss = 0
model.train()
for x in tqdm.tqdm(data_loader):
x = x.float().to(device)
model.zero_grad()
recon = model(x)
loss = model.loss(x, recon)
loss.backward()
optimizer.step()
epoch_loss += loss.item() / len(data_loader)
scheduler.step()
model.eval()
sim, multi, multi_div_sim, score = online_eval(model, type=data_type)
if score > best_score:
best_score = score
torch.save(model.state_dict(), 'saved_models/%d/att_sim_%.3f_multi_%.3f_score_%.3f.pth' % (data_type, sim, multi, score))
print('Epoch : %05d | loss : %.3f | Sim : %.3f | Multi : %.3f | Multi_div_Sim : %.3f | Score : %.3f' %
(epoch, epoch_loss, sim, multi, multi_div_sim, score))
if __name__ == '__main__':
# please only change data_type for training
data_type = 1
batch_size = 16
thresh = {1: 0.8, 2: 0.76}
data_paths = {1: 'data/H1_32T4R.mat', 2: 'data/H2_32T4R.mat'}
keys = {2: 'saved_models/2/att_sim_0.212_multi_1.918_score_0.774.pth',
1: 'saved_models/1/att_sim_0.320_multi_1.076_score_0.832.pth'}
lr = 1e-3
epochs = 10000
aug_ratio = .3
pretrain_path = keys[data_type]
score_thresh = thresh[data_type]
data_path = data_paths[data_type]
train(epochs, batch_size, data_path, lr, aug_ratio)