-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquantize.py
343 lines (270 loc) · 14.4 KB
/
quantize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
from collections import defaultdict
import json
import logging
import math
import multiprocessing
import os
import re
import subprocess
import yaml
logger = logging.getLogger(__name__)
def load_quantizations_from_config(config_file):
"""Load quantization types from a YAML configuration file."""
with open(config_file, 'r') as file:
config_data = yaml.safe_load(file)
return config_data.get("quantizations", [])
def extract_from_config(config_file):
"""Extract parameters from a JSON configuration file."""
with open(config_file, 'r') as file:
config_data = json.load(file)
param_mapping = {
"max_position_embeddings": "ctx_size",
"rope_theta": "rope_freq_base",
"rope_scaling": "rope_scaling",
"rope_scaling_type": "rope_scaling_type",
"torch_dtype": "torch_dtype",
"sampling.top_p": "top_p",
"sampling.temperature": "temp",
"sampling.repeat_penalty": "repeat_penalty",
"sampling.repeat_last_n": "repeat_last_n",
"sampling.min_p": "min_p",
"sampling.top_k": "top_k",
"sampling.presence_penalty": "presence_penalty",
"sampling.frequency_penalty": "frequency_penalty",
"sampling.mirostat": "mirostat",
"sampling.mirostat_lr": "mirostat_lr",
"sampling.mirostat_ent": "mirostat_ent",
"sampling.tfs": "tfs",
"sampling.typical": "typical"
}
params = {param_mapping[key]: config_data.get(key) for key in param_mapping if key in config_data}
return {k: v for k, v in params.items() if v is not None}
def apply_model_specific_overrides(args, config_params):
"""Apply user-specified model-specific arguments to override configuration parameters."""
model_specific_args = [
"temp", "top_k", "top_p", "min_p", "seed", "repeat_last_n",
"repeat_penalty", "presence_penalty", "frequency_penalty",
"tfs", "typical", "mirostat", "mirostat_lr", "mirostat_ent"
]
for arg in model_specific_args:
arg_name = arg.replace('-', '_')
arg_value = getattr(args, arg_name, None)
if arg_value is not None:
config_params[arg] = arg_value
def determine_base_precision(config_params):
"""Determine the base precision based on torch_dtype in config_params."""
unquantized = defaultdict(lambda: "fp16")
unquantized["float32"] = "fp32"
unquantized["float16"] = "fp16"
unquantized["bfloat16"] = "bf16"
return unquantized[config_params.get("torch_dtype", "float16")]
def quantize(args, quantizations):
"""Quantize models for each specified quantization type."""
# Load configuration parameters
if args.config:
config_params = extract_from_config(args.config)
else:
config_params = {}
# Apply user overrides
apply_model_specific_overrides(args, config_params)
# Parameters relevant to quantization
quantization_specific_params = ["ctx_size", "rope_freq_base", "rope_scaling", "rope_scaling_type"]
# Extract quantization-specific parameters
quantization_params = {k: v for k, v in config_params.items() if k in quantization_specific_params}
command_parts = [
os.path.join(args.path_to_llamacpp, "llama-quantize") if args.path_to_llamacpp else "llama-quantize"
]
for quant_type in quantizations:
output_model = os.path.join(args.output_dir, f"{args.model_name}_{quant_type}.gguf")
if not args.overwrite and os.path.exists(output_model):
logger.info(f"Quantized model {output_model} already exists. Skipping.")
continue
# Add quantization-specific parameters
for param, value in quantization_params.items():
if value is not None:
command_parts.append(f"--{param.replace('_', '-')}")
command_parts.append(str(value))
if args.imatrix:
command_parts.append(f"--imatrix {args.imatrix}")
if args.use_leave_output_tensor:
command_parts.append("--leave-output-tensor")
# Base model, output model, and quantization type
command_parts.extend([f"{args.base_model}", f"\"{output_model}\"", f"{quant_type}"])
# Redirect output to a log file
log_file = os.path.join(args.output_dir, f"{quant_type}_log.txt")
command_parts.append(f"> \"{log_file}\" 2>&1")
# Construct and execute command
quantize_command = " ".join(command_parts)
if args.dry_run:
print(f"Dry-run (quantize): {quantize_command}")
continue
else:
logger.info(f"Running quantization command: {quantize_command}")
try:
result = subprocess.run(quantize_command, shell=True, text=True)
if result.returncode != 0:
logger.error(f"Error during quantization to {quant_type}. Check {log_file} for details.")
else:
logger.info(f"Successfully quantized model to {quant_type} and saved as {output_model}.")
except Exception as e:
logger.exception(f"Exception occurred while quantizing model to {quant_type}: {e}")
def measure_perplexity(args, quantizations):
"""Measure perplexity for each model."""
# Load configuration parameters
config_params = extract_from_config(args.config) if args.config else {}
apply_model_specific_overrides(args, config_params)
# Set default temperature to 0 if not specified
if 'temp' not in config_params:
config_params['temp'] = 0
# Determine base precision
base_precision = determine_base_precision(config_params)
base_model = os.path.join(args.output_dir, f"{args.model_name}_{base_precision}.gguf")
base_quant_type = base_precision # Use base precision as the quant type for base model
# Create a list of all models including the base model
all_models = [(base_quant_type, base_model)] + [
(quant_type, os.path.join(args.output_dir, f"{args.model_name}_{quant_type}.gguf")) for quant_type in quantizations
]
perplexity_results = {}
for quant_type, model in all_models:
output_file = os.path.join(args.output_dir, f"perplexity_{quant_type}.txt")
# Build the command
command_parts = [
os.path.join(args.path_to_llamacpp, 'llama-perplexity') if args.path_to_llamacpp else 'llama-perplexity',
"-m", model,
"-f", args.ppl_file,
"--all-logits"
]
# Add parameters from config_params
for param, value in config_params.items():
if value is not None:
command_parts.append(f"--{param.replace('_', '-')}")
command_parts.append(str(value))
# Add fixed parameters
command_parts.extend([
f"--threads {args.threads}",
f"--batch-size {args.batch_size}",
f"--ubatch-size {args.ubatch_size}",
])
# Redirect output to file
command = " ".join(command_parts) + f" > \"{output_file}\" 2>&1"
if args.dry_run:
print(f"Dry-run (perplexity): {command}")
continue
else:
logger.info(f"Running perplexity measurement for {quant_type}")
try:
result = subprocess.run(command, shell=True, text=True)
if result.returncode != 0:
logger.error(f"Error during perplexity measurement for {quant_type}")
else:
# Read the output from the output file
with open(output_file, 'r') as f:
output = f.read()
perplexity = extract_perplexity(output)
if perplexity is not None:
perplexity_results[quant_type] = perplexity
logger.info(f"Perplexity for {quant_type}: {perplexity}")
else:
logger.warning(f"Could not extract perplexity for {quant_type}")
except Exception as e:
logger.exception(f"Exception occurred while measuring perplexity for {quant_type}: {e}")
# After measurement, proceed to summarize results
summarize_perplexity_results(args, perplexity_results, base_precision)
def extract_perplexity(output):
"""Extract perplexity from the output."""
match = re.search(r"Final estimate: PPL = ([\d.]+)", output)
return float(match.group(1)) if match else None
def summarize_perplexity_results(args, perplexity_results, base_precision):
"""Summarize perplexity results and display comparison table."""
base_perplexity = perplexity_results.get(base_precision, None)
if base_perplexity:
print("\nPerplexity Comparison Table:")
print(f"{'Quantization Type':<20} {'PPL(Q)':<15} {'ln(PPL(Q)/PPL(base))':<25}")
print("=" * 65)
for quant, ppl in perplexity_results.items():
if ppl and base_perplexity:
ln_ratio = round(math.log(ppl / base_perplexity), 6)
print(f"{quant:<20} {ppl:<15} {ln_ratio:<25}")
else:
print("Base perplexity data missing; summary may be incomplete.")
def ppl_summary(args, quantizations):
"""Summarize perplexity results from existing files."""
# Load configuration parameters
config_params = extract_from_config(args.config) if args.config else {}
# Determine base precision
base_precision = determine_base_precision(config_params)
perplexity_results = {}
# Load perplexity results
all_quant_types = [base_precision] + quantizations
for quant_type in all_quant_types:
output_file = os.path.join(args.output_dir, f"perplexity_{quant_type}.txt")
try:
with open(output_file, 'r') as file:
output = file.read()
perplexity = extract_perplexity(output)
if perplexity:
perplexity_results[quant_type] = perplexity
except FileNotFoundError:
logger.warning(f"Perplexity file {output_file} not found for {quant_type}.")
# Summarize results
summarize_perplexity_results(args, perplexity_results, base_precision)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(
description="Quantize models and measure perplexity using llama.cpp tools."
)
parser.add_argument("task", choices=["quantize", "perplexity", "ppl_summary"],
help="Task to perform: 'quantize', 'perplexity', 'ppl_summary'.")
parser.add_argument("--overwrite", action="store_true", help="Overwrite existing results if they exist.")
parser.add_argument("--verbosity", type=str, choices=["INFO", "DEBUG"], default="INFO", help="Logging verbosity level.")
parser.add_argument("--dry-run", action="store_true", help="Print commands without executing them.")
parser.add_argument("--path-to-llamacpp", type=str, default="", help="Path to the llama.cpp binaries directory.")
quant_group = parser.add_mutually_exclusive_group(required=True)
quant_group.add_argument("--config", type=str, help="Path to configuration file containing quantizations.")
quant_group.add_argument("--quantizations", nargs="+", type=str, help="Specify quantization types directly.")
parser.add_argument("--output-dir", type=str, default=".", help="Directory to save quantized models and output files.")
parser.add_argument("--model-name", type=str, required=True, help="Name of the model.")
parser.add_argument("--base-model", type=str, help="Path to the base model file.")
parser.add_argument("--imatrix", type=str, help="Path to the importance matrix file.")
parser.add_argument("--use-leave-output-tensor", action="store_true", help="Use the --leave-output-tensor flag.")
parser.add_argument("--dataset", type=str, default="ppl_test_data.txt", help="Path to the perplexity test data file.")
parser.add_argument("--threads", type=int, default=max(multiprocessing.cpu_count() - 1, 1), help="Number of threads to use (default: one less than CPU cores).")
parser.add_argument("--batch-size", type=int, default=512, help="Batch size for perplexity computation (default: 512).")
parser.add_argument("--ubatch-size", type=int, default=128, help="Micro-batch size for perplexity computation (default: 128).")
# Add model-specific flags as optional arguments
parser.add_argument("--temp", type=float, default=0, help="Temperature for sampling (default: 0).")
parser.add_argument("--top-k", type=int, help="Top-k sampling")
parser.add_argument("--top-p", type=float, help="Top-p sampling")
parser.add_argument("--min-p", type=float, help="Min-p sampling")
parser.add_argument("--seed", type=int, help="Random seed for reproducibility")
parser.add_argument("--repeat-last-n", type=int, help="Last n tokens to consider for penalization")
parser.add_argument("--repeat-penalty", type=float, help="Penalize repeat sequence of tokens")
parser.add_argument("--presence-penalty", type=float, help="Repeat alpha presence penalty")
parser.add_argument("--frequency-penalty", type=float, help="Repeat alpha frequency penalty")
parser.add_argument("--tfs", type=float, help="Tail Free Sampling value")
parser.add_argument("--typical", type=float, help="Locally Typical Sampling value")
parser.add_argument("--mirostat", type=int, help="Use Mirostat sampling")
parser.add_argument("--mirostat-lr", type=float, help="Mirostat learning rate, parameter eta")
parser.add_argument("--mirostat-ent", type=float, help="Mirostat target entropy, parameter tau")
args = parser.parse_args()
logging.basicConfig(level=getattr(logging, args.verbosity.upper()))
# Enforce that only one of --quantizations or --config can be specified
if args.quantizations and args.config:
parser.error("Specify only one of --quantizations or --config, not both.")
# Load quantizations from config file or command line argument
if args.config:
quantizations = load_quantizations_from_config(args.config)
elif args.quantizations:
quantizations = args.quantizations
else:
parser.error("One of --quantizations or --config must be specified.")
# Ensure base_model is specified for quantize task
if args.task == "quantize" and not args.base_model:
parser.error("--base_model is required for quantize task.")
# Execute the selected task
if args.task == "quantize":
quantize(args, quantizations)
elif args.task == "perplexity":
measure_perplexity(args, quantizations)
elif args.task == "ppl_summary":
ppl_summary(args, quantizations)