-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfunction.py
executable file
·232 lines (187 loc) · 7.58 KB
/
function.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import \
print_function, unicode_literals, absolute_import, division
import unittest
import roboptim.core
import numpy, numpy.testing
import pickle
import os
from concurrent.futures import ProcessPoolExecutor, as_completed
class Square (roboptim.core.PyDifferentiableFunction):
def __init__ (self):
roboptim.core.PyDifferentiableFunction.__init__ \
(self, 1, 1, "square function")
def impl_compute (self, result, x):
result[0] = x[0] * x[0]
def impl_gradient (self, result, x, f_id):
result[0] = 2. * x[0]
class SquareJacobian (roboptim.core.PyDifferentiableFunction):
def __init__ (self):
roboptim.core.PyDifferentiableFunction.__init__ \
(self, 1, 1, "square function")
def impl_compute (self, result, x):
result[0] = x[0] * x[0]
def impl_gradient (self, result, x, f_id):
raise NotImplementedError
def impl_jacobian (self, result, x):
result[0,0] = 2. * x[0]
class DoubleSquare (roboptim.core.PyDifferentiableFunction):
def __init__ (self):
roboptim.core.PyDifferentiableFunction.__init__ \
(self, 1, 2, "double square function")
def impl_compute (self, result, x):
result[0] = x[0] * x[0]
result[1] = x[0] * x[0]
def impl_gradient (self, result, x, f_id):
result[0] = 2. * x[0]
def test_function_multiprocess (args):
f = args[0]
x = args[1]
i = args[2]
print (f (x))
return i, f (x)
class TestFunctionPy(unittest.TestCase):
def test_function(self):
class F(roboptim.core.PyFunction):
def __init__ (self):
roboptim.core.PyFunction.__init__ (self, 1, 1, "dummy function")
def impl_compute (self, result, x):
result[0] = 42.
f = F()
print (f.inputSize ())
print (f.outputSize ())
print (f.name ())
x = numpy.array ([1.,])
print ("f: %s" % f)
print ("x = %s" % x)
print ("f(x) = %s" % f (x))
self.assertEqual (f (x), [42.])
self.assertEqual ("dummy function (not differentiable)", "%s" % f)
def test_differentiable_function(self):
f = Square ()
print (f.inputSize ())
print (f.outputSize ())
print (f.name ())
x = numpy.array ([6.,])
print ("f: %s" % f)
print ("x = %s" % x)
print ("f(x) = %s" % f (x))
self.assertEqual (f (x), x[0] * x[0])
print ("df(x) = %s" % f.gradient (x, 0))
self.assertEqual (f.gradient (x, 0), 2. * x[0])
self.assertEqual ("square function (differentiable function)", "%s" % f)
def test_differentiable_function_jacobian(self):
f = SquareJacobian ()
print (f.inputSize ())
print (f.outputSize ())
print (f.name ())
x = numpy.array ([6.,])
print ("f: %s" % f)
print ("x = %s" % x)
print ("f(x) = %s" % f (x))
self.assertEqual (f (x), x[0] * x[0])
#self.assertRaises(NotImplementedError, lambda: f.gradient (x, 0))
print ("Jac(f)(x) = %s" % f.jacobian (x))
self.assertEqual (f.jacobian (x), 2. * x[0])
self.assertEqual ("square function (differentiable function)", "%s" % f)
def test_function_pickle(self):
f = SquareJacobian ()
file_name = "test_function_pickle.dump"
dump_file = open (file_name,'wb')
pickle.dump (f,dump_file)
dump_file.close ()
dump_file = open (file_name,'rb')
f_pickled = pickle.load (dump_file)
dump_file.close ()
os.remove(file_name)
# Compare f and f_pickled
x = numpy.array ([6.,])
print ("f: %s" % f)
print ("f_pickled: %s" % f_pickled)
print ("f(x) = %s" % f (x))
print ("f_pickled(x) = %s" % f_pickled (x))
self.assertEqual (f (x), f_pickled (x))
print ("Jac(f)(x) = %s" % f.jacobian (x))
print ("Jac(f_pickled)(x) = %s" % f_pickled.jacobian (x))
self.assertEqual (f.jacobian (x), f_pickled.jacobian (x))
def done_callback(future):
idx, value = future.result()
print("%i ---> %s" % (idx, value))
self.assertEqual (idx**2, value)
# Test scenario: multiprocess
with ProcessPoolExecutor(max_workers=4) as executor:
res = numpy.zeros (4)
jobs = [executor.submit(test_function_multiprocess,
(f, numpy.array ([i]), i)) \
.add_done_callback(done_callback)
for i in range(4)]
def test_problem(self):
cost = Square()
self.assertEqual ("square function (differentiable function)", "%s" % cost)
problem = roboptim.core.PyProblem (cost)
print (problem)
self.assertEqual (problem.constraints, [])
def test_solver(self):
cost = Square()
problem = roboptim.core.PyProblem (cost)
self.assertFalse (problem.startingPoint)
problem.startingPoint = numpy.array([0.,])
self.assertEqual (problem.startingPoint, [0.])
problem.argumentBounds = numpy.array([[-3.,4.],])
numpy.testing.assert_almost_equal (problem.argumentBounds, [[-3.,4.],])
problem.argumentScaling = numpy.array([2.,])
numpy.testing.assert_almost_equal (problem.argumentScaling, [2.,])
g1 = Square ()
problem.addConstraint (g1, [-1., 10.,])
g2 = DoubleSquare ()
problem.addConstraint (g2, numpy.array ([[-1., 10.],[2., 3.]]))
g3 = Square ()
problem.addConstraint (g3, [-1., 10.,], 0.1)
g4 = DoubleSquare ()
problem.addConstraint (g4, numpy.array ([[-1., 10.],[2., 3.]]), [0.1, 0.2])
self.assertEqual (problem.constraints, [g1, g2, g3, g4])
solver = roboptim.core.PySolver ("ipopt", problem)
print (solver)
solver.solve ()
r = solver.minimum ()
print (r)
# Add a new dummy parameter
parameters = dict()
parameters["dummy"] = tuple(("dummy description",
"dummy value"))
assert "dummy" in parameters
assert parameters["dummy"][0] == "dummy description"
assert parameters["dummy"][1] == "dummy value"
solver.parameters = parameters
print (solver)
test_parameters = list()
test_parameters.append (("foo_int", 42, "an integer"))
test_parameters.append (("foo_double", 12., "a scalar"))
test_parameters.append (("foo_bool", False, "a boolean"))
test_parameters.append (("foo_str", "foo", "a string"))
test_parameters.append (("foo_vec", numpy.array ([1., 2., 3., 4.]), "a vector"))
for p in test_parameters:
solver.setParameter (p[0], p[1], p[2])
parameters = solver.parameters
print(parameters)
print(parameters["dummy"][0])
print(parameters["dummy"][1])
assert "dummy" in parameters
assert parameters["dummy"][0] == "dummy description".encode('utf-8')
assert parameters["dummy"][1] == "dummy value".encode('utf-8')
for p in test_parameters:
assert p[0] in parameters
if isinstance (p[1], (str)):
val = p[1].encode ('utf-8')
else:
val = p[1]
assert parameters[p[0]][0] == p[2].encode ('utf-8')
# NumPy check
if type(val).__module__ == numpy.__name__:
assert numpy.array_equal(parameters[p[0]][1], val)
else:
assert parameters[p[0]][1] == val
print (solver)
if __name__ == '__main__':
unittest.main()