-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathoption.py
93 lines (84 loc) · 4.51 KB
/
option.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# Copyright (c) 2020
# Licensed under The MIT License
# Written by Zhiheng Li
# Email: [email protected]
import argparse
import random
import numpy as np
import torch
from dataset.ham import ATOMS
def arg_parse():
parser = argparse.ArgumentParser('Deep Supervised Graph Partitioning Model (DSGPM)')
parser.add_argument('--title', type=str, default='CG')
parser.add_argument('--data_root', dest='data_root',
help='Directory where benchmark is located', required=True)
parser.add_argument('--tb_root',
help='Tensorboard log directory')
parser.add_argument('--ckpt', type=str)
parser.add_argument('--devices', type=str, default='0')
parser.add_argument('--lr', dest='lr', type=float,
help='Learning rate.')
parser.add_argument('--batch_size', dest='batch_size', type=int,
help='Batch size.')
parser.add_argument('--epoch', dest='epoch', type=int,
help='Number of epochs to train.')
parser.add_argument('--num_workers', dest='num_workers', type=int,
help='Number of workers to load data.')
parser.add_argument('--input_dim', dest='input_dim', type=int,
help='Input feature dimension')
parser.add_argument('--hidden_dim', dest='hidden_dim', type=int,
help='Hidden dimension')
parser.add_argument('--output_dim', dest='output_dim', type=int,
help='Output dimension')
parser.add_argument('--nobias', dest='bias', action='store_const',
const=False, default=True,
help='Whether to add bias. Default to True.')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--eval_interval', type=int, default=1)
parser.add_argument('--margin', default=1.0, type=float, help='margin in triplet loss')
parser.add_argument('--entropy_weight', default=1.0, type=float)
parser.add_argument('--adj_recons_weight', default=1.0, type=float)
parser.add_argument('--triplet_weight', default=1.0, type=float)
parser.add_argument('--pos_pair_weight', default=0.1, type=float)
parser.add_argument('--balanced_cut_weight', default=0.0, type=float)
parser.add_argument('--test_shots', type=int, default=2)
parser.add_argument('--bandwidth', type=float, default=1.0)
parser.add_argument('--dropout', type=float, default=0.6)
parser.add_argument('--heads', type=int, default=8, help='number of multi-heads attention in GAT')
parser.add_argument('--num_nn_iter', type=int, default=6)
parser.add_argument('--no_cycle_feat', dest='use_cycle_feat', action='store_const',
const=False, default=True)
parser.add_argument('--no_degree_feat', dest='use_degree_feat', action='store_const',
const=False, default=True)
parser.add_argument('--pretrained_ckpt', type=str)
parser.add_argument('--fold', type=int, default=5)
parser.add_argument('--tb_log', action='store_true')
parser.add_argument('--start_eval_epoch', type=int, default=0)
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--num_cg_beads', nargs='+', type=int, help='number of CG beads. E.g., --num_cg_beads 2 3 4')
parser.add_argument('--seed', type=int)
parser.add_argument('--json_output_dir', type=str)
parser.add_argument('--inference_method', choices=['dsgpm', 'spec_cluster', 'metis', 'graclus'], default='dsgpm')
parser.add_argument('--svg', action='store_true')
parser.add_argument('--vis_root', type=str)
parser.add_argument('--mask_ratio', type=float, default=0.15)
parser.add_argument('--use_mask_embed', action='store_true')
parser.add_argument('--no_automorphism', action='store_false', dest='automorphism')
parser.add_argument('--device_for_affinity_matrix', type=str, choices=['cpu', 'cuda'], default='cuda')
parser.set_defaults(cuda='0',
lr=1e-3,
batch_size=1,
epoch=500,
num_workers=0,
hidden_dim=128,
output_dim=128,
dropout=0.0)
args = parser.parse_args()
input_dim = len(ATOMS)
args.input_dim = input_dim
args.device_for_affinity_matrix = torch.device(args.device_for_affinity_matrix)
if args.seed is not None:
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
return args