We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
通过本地的ubuntu服务器对yolov5s模型进行连板调试时,fp16的精度下降了4个点,请问这个现象正常吗?
rknntoolkit2的版本如下: rknn-toolkit2 version: 2.0.0b0+9bab5682 rk3588的驱动版本如下:
rknn-toolkit2 version: 2.0.0b0+9bab5682
D RKNNAPI: API: 2.0.0b0 (18eacd0 build@2024-03-22T06:07:59) D RKNNAPI: DRV: rknn_server: 2.0.0b0 (18eacd0 build@2024-03-22T14:07:19) D RKNNAPI: DRV: rknnrt: 2.0.0b0 (35a6907d79@2024-03-24T10:31:14)
rknn.config的参数如下:
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform="rk3588")
精度分析结果如下:
rknn convert start! I rknn-toolkit2 version: 2.0.0b0+9bab5682 --> Config model done --> Loading model I It is recommended onnx opset 19, but your onnx model opset is 13! I Model converted from pytorch, 'opset_version' should be set 19 in torch.onnx.export for successful convert! I Loading : 100%|██████████████████████████████████████████████| 121/121 [00:00<00:00, 39667.87it/s] done --> Building model W build: The dataset='calibrate_dataset.txt' is ignored because do_quantization = False! I rknn building ... I rknn buiding done. done --> Export rknn model done --> Accuracy analysis adb: unable to connect for root: closed I target set by user is: rk3588 I Get hardware info: target_platform = rk3588, os = Linux, aarch = aarch64 I Check RK3588 board npu runtime version I Starting ntp or adb, target is RK3588 I Start adb... I Connect to Device success! I NPUTransfer: Starting NPU Transfer Client, Transfer version 2.1.0 (b5861e7@2020-11-23T11:50:36) D RKNNAPI: ============================================== D RKNNAPI: RKNN VERSION: D RKNNAPI: API: 2.0.0b0 (18eacd0 build@2024-03-22T06:07:59) D RKNNAPI: DRV: rknn_server: 2.0.0b0 (18eacd0 build@2024-03-22T14:07:19) D RKNNAPI: DRV: rknnrt: 2.0.0b0 (35a6907d79@2024-03-24T10:31:14) D RKNNAPI: ============================================== D RKNNAPI: Input tensors: D RKNNAPI: index=0, name=images, n_dims=4, dims=[1, 640, 640, 3], n_elems=1228800, size=2457600, w_stride = 0, size_with_stride = 0, fmt=NHWC, type=FP16, qnt_type=NONE, zp=0, scale=1.000000 D RKNNAPI: Output tensors: D RKNNAPI: index=0, name=output1, n_dims=4, dims=[1, 18, 20, 20], n_elems=7200, size=14400, w_stride = 0, size_with_stride = 0, fmt=NCHW, type=FP16, qnt_type=NONE, zp=0, scale=1.000000 D RKNNAPI: index=1, name=output2, n_dims=4, dims=[1, 18, 40, 40], n_elems=28800, size=57600, w_stride = 0, size_with_stride = 0, fmt=NCHW, type=FP16, qnt_type=NONE, zp=0, scale=1.000000 D RKNNAPI: index=2, name=output3, n_dims=4, dims=[1, 18, 80, 80], n_elems=115200, size=230400, w_stride = 0, size_with_stride = 0, fmt=NCHW, type=FP16, qnt_type=NONE, zp=0, scale=1.000000 adb: unable to connect for root: closed /userdata/dumps/: 89 files pulled. 4.2 MB/s (149901680 bytes in 33.662s) I Save Tensors to txt: 100%|████████████████████████████████████████| 89/89 [00:03<00:00, 27.86it/s] I GraphPreparing : 100%|███████████████████████████████████████| 145/145 [00:00<00:00, 15836.22it/s] I AccuracyAnalysing : 100%|███████████████████████████████████████| 145/145 [00:16<00:00, 8.98it/s] # simulator_error: calculate the output error of each layer of the simulator (compared to the 'golden' value). # entire: output error of each layer between 'golden' and 'simulator', these errors will accumulate layer by layer. # single: single-layer output error between 'golden' and 'simulator', can better reflect the single-layer accuracy of the simulator. # runtime_error: calculate the output error of each layer of the runtime. # entire: output error of each layer between 'golden' and 'runtime', these errors will accumulate layer by layer. # single_sim: single-layer output error between 'simulator' and 'runtime', can better reflect the single-layer accuracy of runtime. layer_name simulator_error runtime_error entire single entire single_sim cos euc cos euc cos euc cos euc ----------------------------------------------------------------------------------------------------------------------------------- [Input] images 1.00000 | 0.0 1.00000 | 0.0 1.00000 | 0.1180 1.00000 | 0.1180 [Conv] /model.0/conv/Conv_output_0 1.00000 | 2.4982 1.00000 | 2.4982 [exSwish] /model.0/act/Mul_output_0 1.00000 | 1.9841 1.00000 | 1.3346 1.00000 | 10.165 1.00000 | 10.132 [Conv] /model.1/conv/Conv_output_0 1.00000 | 2.4134 1.00000 | 1.8541 [exSwish] /model.1/act/Mul_output_0 1.00000 | 1.9273 1.00000 | 1.0880 1.00000 | 13.101 1.00000 | 8.1516 [Conv] /model.2/cv1/conv/Conv_output_0 1.00000 | 0.8336 1.00000 | 0.5864 [exSwish] /model.2/cv1/act/Mul_output_0 1.00000 | 0.4872 1.00000 | 0.3146 1.00000 | 3.0559 1.00000 | 1.9833 [Conv] /model.2/m/m.0/cv1/conv/Conv_output_0 1.00000 | 1.3587 1.00000 | 0.8088 [exSwish] /model.2/m/m.0/cv1/act/Mul_output_0 1.00000 | 0.8585 1.00000 | 0.3834 1.00000 | 4.1053 1.00000 | 1.7504 [Conv] /model.2/m/m.0/cv2/conv/Conv_output_0 1.00000 | 2.4838 1.00000 | 1.0474 [exSwish] /model.2/m/m.0/cv2/act/Mul_output_0 1.00000 | 2.1420 1.00000 | 0.5897 1.00000 | 6.9511 1.00000 | 2.0777 [Add] /model.2/m/m.0/Add_output_0 1.00000 | 2.2869 1.00000 | 0.7157 1.00000 | 7.7536 1.00000 | 0.0 [Conv] /model.2/cv2/conv/Conv_output_0 1.00000 | 1.5840 1.00000 | 1.0400 [exSwish] /model.2/cv2/act/Mul_output_0 1.00000 | 1.0642 1.00000 | 0.5301 1.00000 | 6.9092 1.00000 | 3.4345 [Concat] /model.2/Concat_output_0 1.00000 | 2.5224 1.00000 | 0.6349 1.00000 | 10.385 1.00000 | 0.0 [Conv] /model.2/cv3/conv/Conv_output_0 1.00000 | 3.0151 1.00000 | 1.0589 [exSwish] /model.2/cv3/act/Mul_output_0 1.00000 | 1.7501 1.00000 | 0.4406 0.99999 | 6.0663 1.00000 | 1.6735 [Conv] /model.3/conv/Conv_output_0 1.00000 | 1.1325 1.00000 | 0.3195 [exSwish] /model.3/act/Mul_output_0 1.00000 | 0.5785 1.00000 | 0.1652 0.99999 | 2.2395 1.00000 | 0.3982 [Conv] /model.4/cv1/conv/Conv_output_0 1.00000 | 0.3326 1.00000 | 0.1160 [exSwish] /model.4/cv1/act/Mul_output_0 1.00000 | 0.1531 1.00000 | 0.0573 1.00000 | 0.5484 1.00000 | 0.1548 [Conv] /model.4/m/m.0/cv1/conv/Conv_output_0 1.00000 | 0.7294 1.00000 | 0.2583 [exSwish] /model.4/m/m.0/cv1/act/Mul_output_0 1.00000 | 0.4092 1.00000 | 0.1448 1.00000 | 1.4311 1.00000 | 0.3293 [Conv] /model.4/m/m.0/cv2/conv/Conv_output_0 1.00000 | 0.5763 1.00000 | 0.1975 [exSwish] /model.4/m/m.0/cv2/act/Mul_output_0 1.00000 | 0.2526 1.00000 | 0.0820 1.00000 | 0.8956 1.00000 | 0.2005 [Add] /model.4/m/m.0/Add_output_0 1.00000 | 0.3054 1.00000 | 0.0972 1.00000 | 1.0543 1.00000 | 0.0 [Conv] /model.4/m/m.1/cv1/conv/Conv_output_0 1.00000 | 0.8030 1.00000 | 0.2504 [exSwish] /model.4/m/m.1/cv1/act/Mul_output_0 1.00000 | 0.3734 1.00000 | 0.0868 0.99999 | 1.2211 1.00000 | 0.2090 [Conv] /model.4/m/m.1/cv2/conv/Conv_output_0 1.00000 | 0.9418 1.00000 | 0.2373 [exSwish] /model.4/m/m.1/cv2/act/Mul_output_0 1.00000 | 0.6107 1.00000 | 0.1805 0.99999 | 1.9182 1.00000 | 0.4279 [Add] /model.4/m/m.1/Add_output_0 1.00000 | 0.7068 1.00000 | 0.2072 1.00000 | 2.2366 1.00000 | 0.0 [Conv] /model.4/cv2/conv/Conv_output_0 1.00000 | 0.9380 1.00000 | 0.2877 [exSwish] /model.4/cv2/act/Mul_output_0 1.00000 | 0.6277 1.00000 | 0.1712 0.99999 | 2.7682 1.00000 | 0.4022 [Concat] /model.4/Concat_output_0 1.00000 | 0.9453 1.00000 | 0.1837 0.99999 | 3.5589 1.00000 | 0.0 [Conv] /model.4/cv3/conv/Conv_output_0 1.00000 | 1.0833 1.00000 | 0.3435 [exSwish] /model.4/cv3/act/Mul_output_0 1.00000 | 0.4307 1.00000 | 0.1062 0.99999 | 1.6902 1.00000 | 0.2590 [Conv] /model.5/conv/Conv_output_0 1.00000 | 0.7330 1.00000 | 0.1894 [exSwish] /model.5/act/Mul_output_0 1.00000 | 0.3233 1.00000 | 0.0738 0.99998 | 1.6541 1.00000 | 0.2039 [Conv] /model.6/cv1/conv/Conv_output_0 1.00000 | 0.2583 1.00000 | 0.0809 [exSwish] /model.6/cv1/act/Mul_output_0 1.00000 | 0.1132 1.00000 | 0.0361 0.99999 | 0.5547 1.00000 | 0.0952 [Conv] /model.6/m/m.0/cv1/conv/Conv_output_0 1.00000 | 0.5540 1.00000 | 0.1694 [exSwish] /model.6/m/m.0/cv1/act/Mul_output_0 1.00000 | 0.2677 1.00000 | 0.0821 0.99999 | 1.2722 1.00000 | 0.1834 [Conv] /model.6/m/m.0/cv2/conv/Conv_output_0 1.00000 | 0.3577 1.00000 | 0.1134 [exSwish] /model.6/m/m.0/cv2/act/Mul_output_0 1.00000 | 0.1338 1.00000 | 0.0329 0.99998 | 0.6488 1.00000 | 0.0815 [Add] /model.6/m/m.0/Add_output_0 1.00000 | 0.1792 1.00000 | 0.0528 0.99999 | 0.8114 1.00000 | 0.0 [Conv] /model.6/m/m.1/cv1/conv/Conv_output_0 1.00000 | 0.5771 1.00000 | 0.1766 [exSwish] /model.6/m/m.1/cv1/act/Mul_output_0 1.00000 | 0.2299 1.00000 | 0.0546 0.99998 | 1.0036 1.00000 | 0.1380 [Conv] /model.6/m/m.1/cv2/conv/Conv_output_0 1.00000 | 0.4603 1.00000 | 0.1238 [exSwish] /model.6/m/m.1/cv2/act/Mul_output_0 1.00000 | 0.2284 1.00000 | 0.0528 0.99998 | 1.0113 1.00000 | 0.1356 [Add] /model.6/m/m.1/Add_output_0 1.00000 | 0.2980 1.00000 | 0.0734 0.99999 | 1.3001 1.00000 | 0.0 [Conv] /model.6/m/m.2/cv1/conv/Conv_output_0 1.00000 | 0.5523 1.00000 | 0.1619 [exSwish] /model.6/m/m.2/cv1/act/Mul_output_0 1.00000 | 0.2044 1.00000 | 0.0524 0.99999 | 0.8724 1.00000 | 0.1243 [Conv] /model.6/m/m.2/cv2/conv/Conv_output_0 1.00000 | 0.6084 1.00000 | 0.1569 [exSwish] /model.6/m/m.2/cv2/act/Mul_output_0 1.00000 | 0.3599 1.00000 | 0.0859 0.99998 | 1.5912 1.00000 | 0.2535 [Add] /model.6/m/m.2/Add_output_0 1.00000 | 0.4789 1.00000 | 0.1097 0.99998 | 2.1075 1.00000 | 0.0 [Conv] /model.6/cv2/conv/Conv_output_0 1.00000 | 0.6856 1.00000 | 0.1651 [exSwish] /model.6/cv2/act/Mul_output_0 1.00000 | 0.4227 1.00000 | 0.0984 0.99997 | 2.6074 1.00000 | 0.2393 [Concat] /model.6/Concat_output_0 1.00000 | 0.6388 1.00000 | 0.0984 0.99998 | 3.3526 1.00000 | 0.0 [Conv] /model.6/cv3/conv/Conv_output_0 1.00000 | 0.8111 1.00000 | 0.2263 [exSwish] /model.6/cv3/act/Mul_output_0 1.00000 | 0.3316 1.00000 | 0.0756 0.99997 | 1.9800 1.00000 | 0.1875 [Conv] /model.7/conv/Conv_output_0 1.00000 | 0.5560 1.00000 | 0.1404 [exSwish] /model.7/act/Mul_output_0 1.00000 | 0.2298 1.00000 | 0.0507 0.99994 | 1.8461 1.00000 | 0.1214 [Conv] /model.8/cv1/conv/Conv_output_0 1.00000 | 0.2673 1.00000 | 0.0892 [exSwish] /model.8/cv1/act/Mul_output_0 1.00000 | 0.0746 1.00000 | 0.0210 0.99997 | 0.6137 1.00000 | 0.0458 [Conv] /model.8/m/m.0/cv1/conv/Conv_output_0 1.00000 | 0.4261 1.00000 | 0.1309 [exSwish] /model.8/m/m.0/cv1/act/Mul_output_0 1.00000 | 0.2042 1.00000 | 0.0467 0.99995 | 1.5758 1.00000 | 0.1170 [Conv] /model.8/m/m.0/cv2/conv/Conv_output_0 1.00000 | 0.5180 1.00000 | 0.1237 [exSwish] /model.8/m/m.0/cv2/act/Mul_output_0 1.00000 | 0.2913 1.00000 | 0.0669 0.99994 | 2.5182 1.00000 | 0.1759 [Add] /model.8/m/m.0/Add_output_0 1.00000 | 0.3065 1.00000 | 0.0670 0.99993 | 2.6031 1.00000 | 0.0 [Conv] /model.8/cv2/conv/Conv_output_0 1.00000 | 0.4653 1.00000 | 0.1089 [exSwish] /model.8/cv2/act/Mul_output_0 1.00000 | 0.2483 1.00000 | 0.0540 0.99993 | 2.1787 1.00000 | 0.1265 [Concat] /model.8/Concat_output_0 1.00000 | 0.3945 1.00000 | 0.0571 0.99993 | 3.3945 1.00000 | 0.0 [Conv] /model.8/cv3/conv/Conv_output_0 1.00000 | 0.6968 1.00000 | 0.1682 [exSwish] /model.8/cv3/act/Mul_output_0 1.00000 | 0.3261 1.00000 | 0.0670 0.99991 | 2.8786 1.00000 | 0.1646 [Conv] /model.9/cv1/conv/Conv_output_0 1.00000 | 0.3497 1.00000 | 0.0960 [exSwish] /model.9/cv1/act/Mul_output_0 1.00000 | 0.3225 1.00000 | 0.1103 0.99997 | 2.6514 1.00000 | 0.2577 [MaxPool] /model.9/m/MaxPool_output_0 1.00000 | 0.4414 1.00000 | 0.1297 0.99999 | 3.4128 1.00000 | 0.0 [MaxPool] /model.9/m_1/MaxPool_output_0 1.00000 | 0.4784 1.00000 | 0.1560 0.99999 | 3.6140 1.00000 | 0.0 [MaxPool] /model.9/m_2/MaxPool_output_0 1.00000 | 0.4955 1.00000 | 0.1723 0.99999 | 3.6602 1.00000 | 0.0 [Concat] /model.9/Concat_output_0 1.00000 | 0.8794 1.00000 | 0.2754 0.99999 | 6.7183 1.00000 | 0.0 [Conv] /model.9/cv2/conv/Conv_output_0 1.00000 | 0.6059 1.00000 | 0.2436 [exSwish] /model.9/cv2/act/Mul_output_0 1.00000 | 0.1914 1.00000 | 0.0398 0.99992 | 1.6811 1.00000 | 0.0925 [Conv] /model.10/conv/Conv_output_0 1.00000 | 0.4219 1.00000 | 0.1043 [exSwish] /model.10/act/Mul_output_0 1.00000 | 0.1706 1.00000 | 0.0341 0.99991 | 1.4851 1.00000 | 0.0814 [Resize] /model.11/Resize_output_0 1.00000 | 0.3412 1.00000 | 0.0475 0.99991 | 2.9703 1.00000 | 0.0 [Concat] /model.12/Concat_output_0 1.00000 | 0.4758 1.00000 | 0.0701 0.99994 | 3.5698 1.00000 | 0.0 [Conv] /model.13/cv1/conv/Conv_output_0 1.00000 | 0.4899 1.00000 | 0.1309 [exSwish] /model.13/cv1/act/Mul_output_0 1.00000 | 0.1896 1.00000 | 0.0595 0.99997 | 1.3748 1.00000 | 0.1441 [Conv] /model.13/m/m.0/cv1/conv/Conv_output_0 1.00000 | 0.5131 1.00000 | 0.1695 [exSwish] /model.13/m/m.0/cv1/act/Mul_output_0 1.00000 | 0.2320 1.00000 | 0.0631 0.99996 | 1.6936 1.00000 | 0.1499 [Conv] /model.13/m/m.0/cv2/conv/Conv_output_0 1.00000 | 0.5625 1.00000 | 0.1369 [exSwish] /model.13/m/m.0/cv2/act/Mul_output_0 1.00000 | 0.2800 1.00000 | 0.0610 0.99993 | 2.2030 1.00000 | 0.1513 [Conv] /model.13/cv2/conv/Conv_output_0 1.00000 | 0.5349 1.00000 | 0.1256 [exSwish] /model.13/cv2/act/Mul_output_0 1.00000 | 0.2531 1.00000 | 0.0567 0.99994 | 1.9512 1.00000 | 0.1389 [Concat] /model.13/Concat_output_0 1.00000 | 0.3775 1.00000 | 0.0559 0.99994 | 2.9429 1.00000 | 0.0 [Conv] /model.13/cv3/conv/Conv_output_0 1.00000 | 0.8536 1.00000 | 0.1991 [exSwish] /model.13/cv3/act/Mul_output_0 1.00000 | 0.4066 1.00000 | 0.0833 0.99992 | 3.2888 1.00000 | 0.2034 [Conv] /model.14/conv/Conv_output_0 1.00000 | 0.4692 1.00000 | 0.1020 [exSwish] /model.14/act/Mul_output_0 1.00000 | 0.2757 1.00000 | 0.0680 0.99994 | 2.3128 1.00000 | 0.1682 [Resize] /model.15/Resize_output_0 1.00000 | 0.5514 1.00000 | 0.0886 0.99994 | 4.6257 1.00000 | 0.0 [Concat] /model.16/Concat_output_0 1.00000 | 0.6997 1.00000 | 0.1145 0.99996 | 4.9248 1.00000 | 0.0 [Conv] /model.17/cv1/conv/Conv_output_0 1.00000 | 0.5299 1.00000 | 0.1643 [exSwish] /model.17/cv1/act/Mul_output_0 1.00000 | 0.2125 1.00000 | 0.0811 0.99998 | 1.4724 1.00000 | 0.1977 [Conv] /model.17/m/m.0/cv1/conv/Conv_output_0 1.00000 | 0.5593 1.00000 | 0.2251 [exSwish] /model.17/m/m.0/cv1/act/Mul_output_0 1.00000 | 0.2300 1.00000 | 0.0934 0.99998 | 1.5433 1.00000 | 0.2135 [Conv] /model.17/m/m.0/cv2/conv/Conv_output_0 1.00000 | 0.8545 1.00000 | 0.2604 [exSwish] /model.17/m/m.0/cv2/act/Mul_output_0 1.00000 | 0.5550 1.00000 | 0.1444 0.99996 | 3.8579 1.00000 | 0.3635 [Conv] /model.17/cv2/conv/Conv_output_0 1.00000 | 0.5023 1.00000 | 0.1378 [exSwish] /model.17/cv2/act/Mul_output_0 1.00000 | 0.3705 1.00000 | 0.1101 0.99995 | 3.3247 1.00000 | 0.2729 [Concat] /model.17/Concat_output_0 1.00000 | 0.6673 1.00000 | 0.1171 0.99996 | 5.0929 1.00000 | 0.0 [Conv] /model.17/cv3/conv/Conv_output_0 1.00000 | 2.2759 1.00000 | 0.5792 [exSwish] /model.17/cv3/act/Mul_output_0 1.00000 | 1.4949 1.00000 | 0.3410 0.99994 | 11.339 1.00000 | 1.0927 [Conv] /model.18/conv/Conv_output_0 1.00000 | 0.7697 1.00000 | 0.1473 [exSwish] /model.18/act/Mul_output_0 1.00000 | 0.4751 1.00000 | 0.0723 0.99986 | 3.8054 1.00000 | 0.1805 [Concat] /model.19/Concat_output_0 1.00000 | 0.5493 1.00000 | 0.0650 0.99990 | 4.4532 1.00000 | 0.0 [Conv] /model.20/cv1/conv/Conv_output_0 1.00000 | 0.7051 1.00000 | 0.1141 [exSwish] /model.20/cv1/act/Mul_output_0 1.00000 | 0.3838 1.00000 | 0.0557 0.99984 | 3.1648 1.00000 | 0.1376 [Conv] /model.20/m/m.0/cv1/conv/Conv_output_0 1.00000 | 0.6564 1.00000 | 0.1113 [exSwish] /model.20/m/m.0/cv1/act/Mul_output_0 1.00000 | 0.3043 1.00000 | 0.0461 0.99986 | 2.5376 1.00000 | 0.1101 [Conv] /model.20/m/m.0/cv2/conv/Conv_output_0 1.00000 | 0.9716 1.00000 | 0.1299 [exSwish] /model.20/m/m.0/cv2/act/Mul_output_0 1.00000 | 0.6093 1.00000 | 0.0851 0.99981 | 5.2704 1.00000 | 0.2502 [Conv] /model.20/cv2/conv/Conv_output_0 1.00000 | 0.5102 1.00000 | 0.0828 [exSwish] /model.20/cv2/act/Mul_output_0 1.00000 | 0.3326 1.00000 | 0.0576 0.99985 | 3.2475 1.00000 | 0.1576 [Concat] /model.20/Concat_output_0 1.00000 | 0.6942 1.00000 | 0.0676 0.99982 | 6.1906 1.00000 | 0.0 [Conv] /model.20/cv3/conv/Conv_output_0 1.00000 | 1.5858 1.00000 | 0.2464 [exSwish] /model.20/cv3/act/Mul_output_0 1.00000 | 0.9009 1.00000 | 0.1510 0.99986 | 8.1236 1.00000 | 0.5544 [Conv] /model.21/conv/Conv_output_0 1.00000 | 0.6364 1.00000 | 0.0815 [exSwish] /model.21/act/Mul_output_0 1.00000 | 0.3965 1.00000 | 0.0494 0.99974 | 3.5894 1.00000 | 0.1256 [Concat] /model.22/Concat_output_0 1.00000 | 0.4317 1.00000 | 0.0406 0.99980 | 3.8845 1.00000 | 0.0 [Conv] /model.23/cv1/conv/Conv_output_0 1.00000 | 0.6592 1.00000 | 0.0848 [exSwish] /model.23/cv1/act/Mul_output_0 1.00000 | 0.3573 1.00000 | 0.0428 0.99974 | 3.1069 1.00000 | 0.1259 [Conv] /model.23/m/m.0/cv1/conv/Conv_output_0 1.00000 | 0.7364 1.00000 | 0.0879 [exSwish] /model.23/m/m.0/cv1/act/Mul_output_0 0.99999 | 0.4095 1.00000 | 0.0404 0.99964 | 3.4908 1.00000 | 0.1387 [Conv] /model.23/m/m.0/cv2/conv/Conv_output_0 1.00000 | 0.8693 1.00000 | 0.0855 [exSwish] /model.23/m/m.0/cv2/act/Mul_output_0 1.00000 | 0.5731 1.00000 | 0.0634 0.99970 | 4.9156 1.00000 | 0.1682 [Conv] /model.23/cv2/conv/Conv_output_0 1.00000 | 0.5111 1.00000 | 0.0647 [exSwish] /model.23/cv2/act/Mul_output_0 1.00000 | 0.3930 1.00000 | 0.0593 0.99980 | 3.8416 1.00000 | 0.1424 [Concat] /model.23/Concat_output_0 1.00000 | 0.6949 1.00000 | 0.0571 0.99975 | 6.2387 1.00000 | 0.0 [Conv] /model.23/cv3/conv/Conv_output_0 1.00000 | 0.9849 1.00000 | 0.1291 [exSwish] /model.23/cv3/act/Mul_output_0 1.00000 | 0.4929 1.00000 | 0.0801 0.99983 | 4.6763 1.00000 | 0.3220 [Conv] /model.24/m.2/Conv_output_0 1.00000 | 0.2135 1.00000 | 0.1117 [Sigmoid] output1 1.00000 | 0.0289 1.00000 | 0.0074 0.99999 | 0.2542 1.00000 | 0.0921 [Conv] /model.24/m.1/Conv_output_0 1.00000 | 0.4433 1.00000 | 0.2245 [Sigmoid] output2 1.00000 | 0.0470 1.00000 | 0.0160 0.99999 | 0.4188 1.00000 | 0.1851 [Conv] /model.24/m.0/Conv_output_0 1.00000 | 0.9307 1.00000 | 0.5451 [Sigmoid] output3 1.00000 | 0.0790 1.00000 | 0.0359 1.00000 | 0.6391 1.00000 | 0.3722 I The error analysis results save to: ./snapshot/error_analysis.txt W accuracy_analysis: The mapping of layer_name & file_name save to: ./snapshot/map_name_to_file.txt done --> Init runtime environment adb: unable to connect for root: closed I target set by user is: rk3588 I Get hardware info: target_platform = rk3588, os = Linux, aarch = aarch64 I Check RK3588 board npu runtime version I Starting ntp or adb, target is RK3588 I Start adb... I Connect to Device success! I NPUTransfer: Starting NPU Transfer Client, Transfer version 2.1.0 (b5861e7@2020-11-23T11:50:36) D RKNNAPI: ============================================== D RKNNAPI: RKNN VERSION: D RKNNAPI: API: 2.0.0b0 (18eacd0 build@2024-03-22T06:07:59) D RKNNAPI: DRV: rknn_server: 2.0.0b0 (18eacd0 build@2024-03-22T14:07:19) D RKNNAPI: DRV: rknnrt: 2.0.0b0 (35a6907d79@2024-03-24T10:31:14) D RKNNAPI: ============================================== D RKNNAPI: Input tensors: D RKNNAPI: index=0, name=images, n_dims=4, dims=[1, 640, 640, 3], n_elems=1228800, size=2457600, w_stride = 0, size_with_stride = 0, fmt=NHWC, type=FP16, qnt_type=NONE, zp=0, scale=1.000000 D RKNNAPI: Output tensors: D RKNNAPI: index=0, name=output1, n_dims=4, dims=[1, 18, 20, 20], n_elems=7200, size=14400, w_stride = 0, size_with_stride = 0, fmt=NCHW, type=FP16, qnt_type=NONE, zp=0, scale=1.000000 D RKNNAPI: index=1, name=output2, n_dims=4, dims=[1, 18, 40, 40], n_elems=28800, size=57600, w_stride = 0, size_with_stride = 0, fmt=NCHW, type=FP16, qnt_type=NONE, zp=0, scale=1.000000 D RKNNAPI: index=2, name=output3, n_dims=4, dims=[1, 18, 80, 80], n_elems=115200, size=230400, w_stride = 0, size_with_stride = 0, fmt=NCHW, type=FP16, qnt_type=NONE, zp=0, scale=1.000000 done
我的yolov5s模型是在自制训练集上训练得到的,在pytorch的fp32推理精度是81.8,fp16的推理精度是77.5,我翻阅了官方文档,没有找到解释这个现象的原因。所以fp16相较于fp32在rk3588上通过adb连板推理掉了4个点这个现象正常吗?
The text was updated successfully, but these errors were encountered:
No branches or pull requests
通过本地的ubuntu服务器对yolov5s模型进行连板调试时,fp16的精度下降了4个点,请问这个现象正常吗?
rknntoolkit2的版本如下:
rknn-toolkit2 version: 2.0.0b0+9bab5682
rk3588的驱动版本如下:
rknn.config的参数如下:
精度分析结果如下:
我的yolov5s模型是在自制训练集上训练得到的,在pytorch的fp32推理精度是81.8,fp16的推理精度是77.5,我翻阅了官方文档,没有找到解释这个现象的原因。所以fp16相较于fp32在rk3588上通过adb连板推理掉了4个点这个现象正常吗?
The text was updated successfully, but these errors were encountered: