-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdo_save_motion_sample.py
147 lines (118 loc) · 5.81 KB
/
do_save_motion_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Created on Aug 29 09:11:47 2019
@author: romain
"""
import numpy as np
import matplotlib.pyplot as plt
import nibabel as nib
import torch
from nilearn import plotting
from torchio import Image, ImagesDataset, INTENSITY, LABEL, Subject
from utils_file import get_parent_path, gfile, gdir
from doit_train import get_motion_transform
from torchvision.transforms import Compose
from torchio.transforms import RandomMotionFromTimeCourse
if __name__ == '__main__':
from optparse import OptionParser
usage= "usage: %prog [options] run a model on a file "
# Parse input arguments
parser=OptionParser(usage=usage)
#parser.add_option("-h", "--help", action="help")
parser.add_option("-i", "--image_in", action="store", dest="image_in", default='',
help="full path to the image to add motion to ")
parser.add_option("-s", "--seed", action="store", dest="seed", default='1',
help="random seed ")
parser.add_option("-r", "--res_dir", action="store", dest="res_dir", default='/tmp/',
help="result dir ")
parser.add_option("-n", "--index_num", action="store", dest="index_num", default=1,
help="num given to sample saved file")
parser.add_option("--nb_sample", action="store", dest="nb_sample", default=1,
help="number of sample to generate")
parser.add_option("--plot_volume", action="store_true", dest="plot_volume", default=False,
help="if spefifyed a 3 slice png of the transform volume wil be created ")
parser.add_option("--motion_type", action="store", dest="motion_type", default='motion1',
help=" chose type of deformation motion1 | elastic1_and_motion1 ")
parser.add_option("--keep_all ", action="store_true", dest="keep_all", default=False,
help="if not specifie it will remove the imag_orig p1 and p2 from sample ")
parser.add_option("--keep_brain ", action="store_true", dest="keep_brain", default=False,
help="if not specifie it will remove the brain from sample ")
(options, args) = parser.parse_args()
fin, seed, res_dir = options.image_in, np.int(options.seed), options.res_dir
index, nb_sample = np.int(options.index_num), np.int(options.nb_sample)
plot_volume, keep_all, keep_brain = options.plot_volume, options.keep_all, options.keep_brain
motion_type = options.motion_type
import os
resdir_mvt = res_dir + '/mvt_param/'
resdir_fig = res_dir + '/fig/'
try : #on cluster, all job are doing the mkdir at the same time ...
if not os.path.isdir(resdir_mvt): os.mkdir(resdir_mvt)
if not os.path.isdir(resdir_fig): os.mkdir(resdir_fig)
except:
pass
transfo = get_motion_transform(type=motion_type)
torch.manual_seed(seed)
np.random.seed(seed)
dir_img = get_parent_path([fin])[0]
fm = gfile(dir_img, '^mask', {"items":1})
fp1 = gfile(dir_img,'^p1', {"items":1})
fp2 = gfile(dir_img,'^p2', {"items":1})
if len(fm)==0: #may be in cat12 subdir (like for HCP)
fm = gfile(dir_img, '^brain_T1', {"items": 1})
#dir_cat = gdir(dir_img,'cat12')
#fm = gfile(dir_cat, '^mask_brain', {"items": 1})
#fp1 = gfile(dir_cat, '^p1', {"items": 1})
#fp2 = gfile(dir_cat, '^p2', {"items": 1})
one_suj = { 'image':Image(fin, INTENSITY),
'brain':Image(fm[0], LABEL)}
if len(fp1)==1:
one_suj['p1'] = Image(fp1[0], LABEL)
if len(fp2) == 1:
one_suj['p2'] = Image(fp2[0], LABEL)
subject = [Subject(one_suj) for i in range(0, nb_sample) ]
#subject = [ one_suj for i in range(0,nb_sample) ]
print('input list is duplicated {} '.format(len(subject)))
#subject = Subject(subject)
dataset = ImagesDataset(subject, transform=transfo)
for i in range(0, nb_sample):
sample = dataset[i] #in n time sample[0] it is cumulativ
image_dict = sample['image']
volume_path = image_dict['path']
dd = volume_path.split('/')
volume_name = dd[len(dd)-2] + '_' + image_dict['stem']
#nb_saved = image_dict['index'] #
fname = resdir_mvt + 'ssim_{}_sample{:05d}_suj_{}_mvt.csv'.format(image_dict['metrics']['ssim'],
index, volume_name)
t = dataset.get_transform()
if isinstance(t, Compose):
tt = t.transforms
for ttt in tt:
if isinstance(ttt, RandomMotionFromTimeCourse):
t = ttt
break
fitpars = t.fitpars
np.savetxt(fname , fitpars, delimiter=',')
sample['mvt_csv'] = fname
fname_sample = res_dir + '/sample{:05d}'.format(index)
if keep_all is False:
if 'image_orig' in sample: sample.pop('image_orig')
if 'p1' in sample: sample.pop('p1')
if 'p2' in sample: sample.pop('p2')
if keep_brain is False:
if 'brain' in sample: sample.pop('brain')
torch.save(sample, fname_sample + '_sample.pt')
if plot_volume:
plt.ioff()
fig = plt.figure()
plt.plot(fitpars.T)
plt.savefig(fname + '_mvt.png')
plt.close(fig)
resdir_fig = res_dir + '/fig/'
image = sample['image']['data'][0].numpy()
affine = sample['image']['affine']
nii = nib.Nifti1Image(image, affine)
fname = resdir_fig + 'ssim_{}_N{:04d}_suj_{}'.format(image_dict['metrics']['ssim'],
index, volume_name)
di = plotting.plot_anat(nii, output_file=fname+'_fig.png',annotate=False, draw_cross = False)
index += 1