This repository has been archived by the owner on May 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathget_precis_forecast.R
321 lines (286 loc) · 9.28 KB
/
get_precis_forecast.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#' Get BOM daily précis forecast for select towns from BOM
#'
#' Fetch the \acronym{BOM} daily précis forecast and return a data frame of the
#' seven-day town forecasts for a specified state or territory.
#'
#' @param state Australian state or territory as full name or postal code.
#' Fuzzy string matching via \code{\link[base]{agrep}} is done. Defaults to
#' \dQuote{AUS} returning all state bulletins, see Details for more.
#'
#' @details Allowed state and territory postal codes, only one state per request
#' or all using \code{AUS}.
#' \describe{
#' \item{ACT}{Australian Capital Territory (will return NSW)}
#' \item{NSW}{New South Wales}
#' \item{NT}{Northern Territory}
#' \item{QLD}{Queensland}
#' \item{SA}{South Australia}
#' \item{TAS}{Tasmania}
#' \item{VIC}{Victoria}
#' \item{WA}{Western Australia}
#' \item{AUS}{Australia, returns forecast for all states, NT and ACT}
#' }
#'
#' @return
#' A \code{\link[data.table]{data.table}} of an Australia \acronym{BOM} précis
#' seven day forecasts for \acronym{BOM} selected towns. For full details of
#' fields and units returned see Appendix 2 in the \CRANpkg{bomrang} vignette,
#' use\cr \code{vignette("bomrang", package = "bomrang")} to view.
#'
#' @examples
#' \donttest{
#' # get the short forecast for Queensland
#' BOM_forecast <- get_precis_forecast(state = "QLD")
#' BOM_forecast
#'}
#' @references
#' Forecast data come from Australian Bureau of Meteorology (\acronym{BOM})
#' Weather Data Services \cr
#' \url{http://www.bom.gov.au/catalogue/data-feeds.shtml}
#'
#' Location data and other metadata for towns come from
#' the \acronym{BOM} anonymous \acronym{FTP} server with spatial data \cr
#' \url{ftp://ftp.bom.gov.au/anon/home/adfd/spatial/}, specifically the
#' \acronym{DBF} file portion of a shapefile, \cr
#' \url{ftp://ftp.bom.gov.au/anon/home/adfd/spatial/IDM00013.dbf}
#'
#' @author Adam H. Sparks, \email{adamhsparks@@gmail.com} and Keith Pembleton,
#' \email{keith.pembleton@@usq.edu.au} and Paul Melloy,
#' \email{paul@@melloy.com.au}
#'
#' @seealso \link{parse_precis_forecast}
#'
#' @export get_precis_forecast
get_precis_forecast <- function(state = "AUS") {
# this is just a placeholder for functionality with parse_precis_forecast()
filepath <- NULL
the_state <- .check_states(state)
location <- .validate_filepath(filepath)
forecast_out <- .return_precis(location, the_state)
return(forecast_out)
}
# Précis forecast functions for get() and parse()-------------------------------
#' Create précis forecast XML file paths/URLs
#'
#' @param location File location either a URL or local filepath provided by
#' \code{.validate_filepath()}
#'
#' @noRd
.return_precis <- function(file_loc, cleaned_state) {
# create vector of XML files
AUS_XML <- c(
"IDN11060.xml",
# NSW
"IDD10207.xml",
# NT
"IDQ11295.xml",
# QLD
"IDS10044.xml",
# SA
"IDT16710.xml",
# TAS
"IDV10753.xml",
# VIC
"IDW14199.xml" # WA
)
if (cleaned_state != "AUS") {
xml_url <- .create_bom_file(AUS_XML,
.the_state = cleaned_state,
.file_loc = file_loc)
precis_out <- .parse_precis_forecast(xml_url)
if (is.null(precis_out)) {
return(invisible(NULL))
}
return(precis_out[])
} else {
file_list <- paste0(file_loc, "/", AUS_XML)
precis_out <-
lapply(X = file_list, FUN = .parse_precis_forecast)
precis_out <- data.table::rbindlist(precis_out, fill = TRUE)
return(precis_out[])
}
}
#' extract the values of the precis forecast items
#'
#' @param y précis forecast xml_object
#'
#' @return a data.table of the forecast for cleaning and returning to user
#' @keywords internal
#' @author Adam H. Sparks, \email{adamhsparks@@gmail.com}
#' @noRd
.parse_precis_forecast <- function(xml_url) {
.SD <- #nocov start
AAC_codes <-
attrs <-
end_time_local <-
precipitation_range <-
start_time_local <-
values <-
.N <-
.I <-
.GRP <-
.BY <-
.EACHI <-
state <-
product_id <-
probability_of_precipitation <-
start_time_utc <-
end_time_utc <-
upper_precipitation_limit <-
lower_precipitation_limit <-
forecast_icon_code <- NULL #nocov end
# load the XML from ftp
if (substr(xml_url, 1, 3) == "ftp") {
xml_object <- .get_url(xml_url)
if (is.null(xml_object)) {
return(invisible(NULL))
}
} else {# load the XML from local
xml_object <- xml2::read_xml(xml_url)
}
out <- .parse_precis_xml(xml_object)
data.table::setnames(
out,
c("air_temperature_maximum",
"air_temperature_minimum"),
c("maximum_temperature",
"minimum_temperature")
)
# clean up and split out time cols into offset and remove extra chars
.split_time_cols(x = out)
# merge with aac codes for location information
load(system.file("extdata", "AAC_codes.rda", package = "bomrang")) # nocov
data.table::setkey(out, "aac")
out <- AAC_codes[out, on = c("aac", "town")]
# add state field
out[, state := gsub("_.*", "", out$aac)]
# add product ID field
out[, product_id := substr(basename(xml_url),
1,
nchar(basename(xml_url)) - 4)]
# remove unnecessary text from cols
out[, probability_of_precipitation := gsub("%",
"",
probability_of_precipitation)]
# handle precipitation ranges where they may or may not be present
if ("precipitation_range" %in% colnames(out)) {
# format any values that are only zero to make next step easier
out[precipitation_range == "0 mm", precipitation_range := "0 to 0 mm"]
# separate the precipitation column into two, upper/lower limit
out[, c("lower_precipitation_limit",
"upper_precipitation_limit") :=
data.table::tstrsplit(precipitation_range,
"to",
fixed = TRUE)]
out[, upper_precipitation_limit := gsub("mm",
"",
upper_precipitation_limit)]
out[, precipitation_range := NULL]
} else {
# if the columns don't exist insert as NA
out[, lower_precipitation_limit := NA]
out[, upper_precipitation_limit := NA]
}
refcols <- c(
"index",
"product_id",
"state",
"town",
"aac",
"lat",
"lon",
"elev",
"start_time_local",
"end_time_local",
"utc_offset",
"start_time_utc",
"end_time_utc",
"minimum_temperature",
"maximum_temperature",
"lower_precipitation_limit",
"upper_precipitation_limit",
"precis",
"probability_of_precipitation"
)
data.table::setcolorder(out, refcols)
# set col classes
# factors
out[, c(1, 11) := lapply(.SD, function(x)
as.factor(x)),
.SDcols = c(1, 11)]
# numeric
out[, c(6:8, 14:17, 19) := lapply(.SD, function(x)
suppressWarnings(as.numeric(x))),
.SDcols = c(6:8, 14:17, 19)]
# dates
out[, c(9:10) := lapply(.SD, function(x)
as.POSIXct(x,
origin = "1970-1-1",
format = "%Y-%m-%d %H:%M:%OS")),
.SDcols = c(9:10)]
out[, c(12:13) := lapply(.SD, function(x)
as.POSIXct(
x,
origin = "1970-1-1",
format = "%Y-%m-%d %H:%M:%OS",
tz = "GMT"
)),
.SDcols = c(12:13)]
# character
out[, c(2:5, 18) := lapply(.SD, function(x)
as.character(x)),
.SDcols = c(2:5, 18)]
return(out)
}
#' extract the values of a coastal forecast item
#'
#' @param xml_object précis forecast xml_object
#'
#' @return a data.table of the forecast for further refining
#' @keywords internal
#' @author Adam H. Sparks, \email{adamhsparks@@gmail.com}
#' @noRd
.parse_precis_xml <- function(xml_object) {
forecast_icon_code <- NULL
# get the actual forecast objects
fp <- xml2::xml_find_all(xml_object, ".//forecast-period")
locations_index <- data.table::data.table(
# find all the aacs
aac = xml2::xml_find_first(fp, ".//parent::area") %>%
xml2::xml_attr("aac"),
# find the names of towns
town = xml2::xml_find_first(fp, ".//parent::area") %>%
xml2::xml_attr("description"),
# find corecast period index
index = xml2::xml_attr(fp, "index"),
start_time_local = xml2::xml_attr(fp, "start-time-local"),
end_time_local = xml2::xml_attr(fp, "end-time-local"),
start_time_utc = xml2::xml_attr(fp, "start-time-utc"),
end_time_utc = xml2::xml_attr(fp, "end-time-utc")
)
vals <- lapply(fp, function(node) {
# find names of all children nodes
childnodes <- node %>%
xml2::xml_children() %>%
xml2::xml_name()
# find the attr value from all child nodes
names <- node %>%
xml2::xml_children() %>%
xml2::xml_attr("type")
# create columns names based on either node name or attr value
names <- ifelse(is.na(names), childnodes, names)
# find all values
values <- node %>%
xml2::xml_children() %>%
xml2::xml_text()
# create data frame and properly label the columns
df <- data.frame(t(values), stringsAsFactors = FALSE)
names(df) <- names
df
})
vals <- data.table::rbindlist(vals, fill = TRUE)
sub_out <- cbind(locations_index, vals)
# drop icon code
sub_out[, forecast_icon_code := NULL]
return(sub_out[])
}