forked from hsakas/siamese_similarity_model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBestModel.py
187 lines (152 loc) · 6.63 KB
/
BestModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from __future__ import division, print_function
from keras import backend as K
from keras.layers import Input
from keras.callbacks import ModelCheckpoint
from keras.layers.core import Activation, Dense, Dropout, Lambda
from keras.layers.merge import Concatenate
from keras.models import Model, load_model
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import itertools
import numpy as np
import os
DATA_DIR = os.path.abspath("data")
IMAGE_DIR = os.path.join(DATA_DIR, "images", "jpg")
BATCH_SIZE = 12
NUM_EPOCHS = 10
def get_holiday_triples(image_dir):
image_groups = {}
for image_name in os.listdir(image_dir):
base_name = image_name[0:-4]
group_name = base_name[0:4]
if group_name in image_groups.keys():
image_groups[group_name].append(image_name)
else:
image_groups[group_name] = [image_name]
num_sims = 0
image_triples = []
group_list = sorted(list(image_groups.keys()))
for i, g in enumerate(group_list):
if num_sims % 100 == 0:
print("Generated {:d} pos + {:d} neg = {:d} total image triples"
.format(num_sims, num_sims, 2 * num_sims))
images_in_group = image_groups[g]
sim_pairs_it = itertools.combinations(images_in_group, 2)
# for each similar pair, generate a corresponding different pair
for ref_image, sim_image in sim_pairs_it:
image_triples.append((ref_image, sim_image, 1))
num_sims += 1
while True:
j = np.random.randint(low=0, high=len(group_list), size=1)[0]
if j != i:
break
dif_image_candidates = image_groups[group_list[j]]
k = np.random.randint(low=0, high=len(dif_image_candidates), size=1)[0]
dif_image = dif_image_candidates[k]
image_triples.append((ref_image, dif_image, 0))
print("Generated {:d} pos + {:d} neg = {:d} total image triples"
.format(num_sims, num_sims, 2 * num_sims))
return image_triples
def load_vectors(vector_file):
vec_dict = {}
fvec = open(vector_file, "r")
for line in fvec:
image_name, image_vec = line.strip().split("\t")
vec = np.array([float(v) for v in image_vec.split(",")])
vec_dict[image_name] = vec
fvec.close()
return vec_dict
def train_test_split(triples, splits):
assert sum(splits) == 1.0
split_pts = np.cumsum(np.array([0.] + splits))
indices = np.random.permutation(np.arange(len(triples)))
shuffled_triples = [triples[i] for i in indices]
data_splits = []
for sid in range(len(splits)):
start = int(split_pts[sid] * len(triples))
end = int(split_pts[sid + 1] * len(triples))
data_splits.append(shuffled_triples[start:end])
return data_splits
def batch_to_vectors(batch, vec_size, vec_dict):
X1 = np.zeros((len(batch), vec_size))
X2 = np.zeros((len(batch), vec_size))
Y = np.zeros((len(batch), 2))
for tid in range(len(batch)):
X1[tid] = vec_dict[batch[tid][0]]
X2[tid] = vec_dict[batch[tid][1]]
Y[tid] = [1, 0] if batch[tid][2] == 0 else [0, 1]
return ([X1, X2], Y)
def data_generator(triples, vec_size, vec_dict, batch_size=32):
while True:
# shuffle once per batch
indices = np.random.permutation(np.arange(len(triples)))
num_batches = len(triples) // batch_size
for bid in range(num_batches):
batch_indices = indices[bid * batch_size: (bid + 1) * batch_size]
batch = [triples[i] for i in batch_indices]
yield batch_to_vectors(batch, vec_size, vec_dict)
def evaluate_model(model_file, test_gen):
model_name = os.path.basename(model_file)
model = load_model(model_file)
print("=== Evaluating model: {:s} ===".format(model_name))
ytrue, ypred = [], []
num_test_steps = len(test_triples) // BATCH_SIZE
for i in range(num_test_steps):
(X1, X2), Y = test_gen.next()
Y_ = model.predict([X1, X2])
ytrue.extend(np.argmax(Y, axis=1).tolist())
ypred.extend(np.argmax(Y_, axis=1).tolist())
accuracy = accuracy_score(ytrue, ypred)
print("\nAccuracy: {:.3f}".format(accuracy))
print("\nConfusion Matrix")
print(confusion_matrix(ytrue, ypred))
print("\nClassification Report")
print(classification_report(ytrue, ypred))
return accuracy
def get_model_file(data_dir, vector_name, merge_mode, borf):
return os.path.join(data_dir, "models", "{:s}-{:s}-{:s}.h5"
.format(vector_name, merge_mode, borf))
image_triples = get_holiday_triples(IMAGE_DIR)
train_triples, val_triples, test_triples = train_test_split(image_triples,
splits=[0.7, 0.1, 0.2])
print(len(train_triples), len(val_triples), len(test_triples))
VECTOR_SIZE = 4096
VECTOR_FILE = os.path.join(DATA_DIR, "vgg16-vectors.tsv")
vec_dict = load_vectors(VECTOR_FILE)
train_gen = data_generator(train_triples, VECTOR_SIZE, vec_dict, BATCH_SIZE)
val_gen = data_generator(val_triples, VECTOR_SIZE, vec_dict, BATCH_SIZE)
def cosine_distance(vecs, normalize=False):
x, y = vecs
if normalize:
x = K.l2_normalize(x, axis=0)
y = K.l2_normalize(x, axis=0)
return K.prod(K.stack([x, y], axis=1), axis=1)
def cosine_distance_output_shape(shapes):
return shapes[0]
vecs = [np.random.random((10,)), np.random.random((10,))]
print(vecs[0].shape, vecs[1].shape)
s = cosine_distance(vecs)
print(s.shape)
input_1 = Input(shape=(VECTOR_SIZE,))
input_2 = Input(shape=(VECTOR_SIZE,))
merged = Concatenate(axis=-1)([input_1, input_2])
fc1 = Dense(512, kernel_initializer="glorot_uniform")(merged)
fc1 = Dropout(0.2)(fc1)
fc1 = Activation("relu")(fc1)
fc2 = Dense(128, kernel_initializer="glorot_uniform")(fc1)
fc2 = Dropout(0.2)(fc2)
fc2 = Activation("relu")(fc2)
pred = Dense(2, kernel_initializer="glorot_uniform")(fc2)
pred = Activation("softmax")(pred)
model = Model(inputs=[input_1, input_2], outputs=pred)
# model.summary()
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
best_model_name = get_model_file(DATA_DIR, "vgg16", "dot", "best")
checkpoint = ModelCheckpoint(best_model_name, save_best_only=True)
print('triples', len(val_triples))
train_steps_per_epoch = len(train_triples) // BATCH_SIZE
val_steps_per_epoch = len(val_triples) // BATCH_SIZE
print('val steps', val_steps_per_epoch)
history = model.fit_generator(train_gen, steps_per_epoch=train_steps_per_epoch,
epochs=NUM_EPOCHS,
validation_data=val_gen, validation_steps=val_steps_per_epoch,
callbacks=[checkpoint])