forked from facebookresearch/esm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlm_design.py
456 lines (389 loc) · 17 KB
/
lm_design.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# core
import logging
import os
import sys
import time
from omegaconf import DictConfig
import hydra
import os
from pathlib import Path
import sys
import time
import logging
import numpy as np
from omegaconf import DictConfig, OmegaConf
import torch
import torch.nn.functional as F
# make sure script started from the root of the this file
assert Path.cwd().name == 'lm-design', 'Please run this script from examples/lm-design/'
sys.path.append('../../')
from esm.data import Alphabet
from utils.scheduler import SchedulerSpec, to_scheduler, set_scheduler_repo
import utils.pdb_loader as pdb_loader
from utils.loss import get_cce_loss
from utils.lm import lm_marginal
from utils.masking import assert_valid_mask
from utils.sampling import (
set_rng_seeds,
)
from utils.constants import COORDS_ANGLE_NAMES, COORDS4D_NAMES
import utils.struct_models as struct_models
from utils.free_generation import stage_free_generation
from utils.fixedbb import stage_fixedbb
from utils.lm import WrapLmEsm
from utils.tensor import (
assert_shape,
)
from utils import ngram as ngram_utils
logger = logging.getLogger(__name__) # Hydra configured
os.environ['MKL_THREADING_LAYER'] = 'GNU'
class Designer:
cutoff_dist = 8
LOGITS_LARGE = 100
standard_AA = 'LAGVSERTIDPKQNFYMHWC'
##########################################
# Inits
##########################################
def __init__(
self,
cfg,
target_pdb_path=None,
device=None
):
## Initialize models
if device:
self.device = device
else:
use_cuda = torch.cuda.is_available() and not cfg.disable_cuda
device_idx = f":{cfg.cuda_device_idx}" if cfg.get('cuda_device_idx') else ""
self.device = torch.device(f'cuda{device_idx}' if use_cuda else 'cpu')
SEED_SENTINEL = 1238
self.seed = cfg.seed + SEED_SENTINEL
self.cfg = cfg
self.allowed_AA = ''.join(AA for AA in self.standard_AA if (
('suppress_AA' not in self.cfg) or (not AA in self.cfg.suppress_AA)))
self._init_models()
if target_pdb_path is None:
# eg notarget-L70
target_pdb_path = 'notarget-L100'
self._init_no_target(cfg.free_generation_length)
else:
target_pdb_path = Path(target_pdb_path)
self._init_target(target_pdb_path)
set_rng_seeds(self.seed)
self.schedulers = {} # reset schedulers
self.resuming_stage = False
self.init_sequences(cfg.num_seqs)
torch.backends.cudnn.benchmark = True # Slightly faster runtime for optimization
logger.info("Finished Designer init")
def _init_models(self):
self.vocab = Alphabet.from_architecture('ESM-1b')
self.vocab_mask_AA = torch.BoolTensor(
[t in self.allowed_AA for t in self.vocab.all_toks]
).to(self.device)
self.vocab_mask_AA_idx = torch.nonzero(self.vocab_mask_AA).squeeze()
self.struct_model, self.pdb_loader_params = struct_models.load(
self.vocab,
)
self.LM = WrapLmEsm(self.struct_model.lm, self.vocab)
# 4. Common model settings
def apply_common_settings(model):
model.to(self.device)
model.eval()
# No grads for models
for p in model.parameters():
p.requires_grad = False
return model
self.LM = apply_common_settings(self.LM)
self.struct_model = apply_common_settings(self.struct_model)
def encode(self, seq_raw, onehot=True):
device = self.device
if isinstance(seq_raw, list):
seq_enc = [[self.vocab.get_idx(c) for c in seq]
for seq in seq_raw]
else:
seq_enc = [self.vocab.get_idx(c) for c in seq_raw]
seq_enc = torch.LongTensor(seq_enc)
if onehot:
seq_enc = F.one_hot(seq_enc, len(self.vocab)).float()
return seq_enc.to(device)
def decode(self, seq_enc, onehot=True):
if onehot:
seq_enc = seq_enc.argmax(-1)
# for seq in seq_enc.view(-1, seq_enc.
assert seq_enc.dim() == 2
# Must do cpu conversion here!
# Or else pytorch runtime will do it O(L) times and incur a very
# large slowdown.
seq_enc = seq_enc.cpu()
seqs = [
''.join([self.vocab.get_tok(c) for c in _seq]) for _seq in seq_enc
]
return seqs
def _init_no_target(self, L):
## Initialize target and wt_seq
self.L = self.seqL = L
self.wt_metrics = {}
self.wt_seq = None
self.target_no_angles = False
# Assume naive positional indexing, to allow calling struct_pred.
self.pos_idx = torch.arange(self.L).long()[None,].to(self.device)
# Valid contacts indicate positions that had no contact in the pdb file of the protein to
# ignore. No target, so everything is valid.
self.valid_contacts = torch.ones(self.L, self.L).bool().to(self.device)
def _init_target(self, pdb_path):
## Initialize target and wt_seq
assert pdb_path.suffix == ".pdb"
self.target_pdb_path = pdb_path
self.pdb_id = Path(pdb_path).stem
self.target_data = pdb_loader.loader(
pdb_path=pdb_path,
params=self.pdb_loader_params,
set_diagonal=True,
allow_missing_residue_coords=self.cfg.allow_missing_residue_coords)
self.target_xyz = torch.tensor(self.target_data['xyz']).to(self.device)
self.pos_idx = torch.tensor(self.target_data['idx']).long()[None,].to(self.device)
self.coords = torch.tensor(self.target_data['coords6d']).long()[None,].to(self.device)
self.wt_seq_raw = self.target_data['fullseq'][0]
self.wt_seq = self.encode(self.wt_seq_raw).unsqueeze(0) # B x L x K
self.seqL = self.L = len(self.wt_seq_raw)
self.target_distancemap = torch.from_numpy(self.target_data["dist"])
self.target_contacts = (self.target_distancemap < self.cutoff_dist).to(self.device)
self.target_no_contacts = ~self.target_contacts
# Mark for contacts that have no nan distance values in the distance map
self.valid_contacts = torch.from_numpy(self.target_data['dist'] == self.target_data['dist']).to(self.device)
self.target_contacts &= self.valid_contacts
self.target_no_contacts &= self.valid_contacts
self.target_no_angles = self.target_data["no_angles"]
logger.info(f'Initialized target {self.pdb_id} of length {self.seqL}')
logger.info(f'Wildtype sequence:\n{self.wt_seq_raw}')
def init_sequences(self, num_seqs):
assert num_seqs == 1, "Only 1 sequence design in parallel supported for now."
self.B = B = self.num_seqs = num_seqs
K = len(self.vocab)
AA_indices = torch.arange(K, device=self.device)[self.vocab_mask_AA]
bt = torch.from_numpy(np.random.choice(AA_indices.cpu().numpy(), size=(B, self.L))).to(self.device)
self.x_seqs = F.one_hot(bt,K).float()
self.init_seqs = self.x_seqs.clone()
##########################################
# Losses
##########################################
def calc_sequence_loss(self, x_seqs, LM_losses={'CE_x_pLM': 1.0}, mask=None):
"""
Calculate pLM (LM output probabilities) based on mask-1-out over all positions.
Calculate seq_losses and combine according to weights in LM_losses.
Args:
x_seqs (torch.float32): [B, L, K]
Returns:
LM_loss (torch.float32): [B]
LM_out_logprobs (torch.float32): [B, L, K]
logging_dict: {other_metrics: torch.float32 [B]}
"""
B, L, K = x_seqs.shape
if mask is None:
mask = torch.ones(B, L, 1, device=self.device).bool()
n = assert_valid_mask(mask, x_seqs)
LM_out_logprobs = lm_marginal(self.LM, x_seqs, mask=mask)
# For loss calculations, only calculate based on the portion in `mask`.
x_seqs_masked = x_seqs.masked_select(mask).reshape(B, n, K)
losses = {
'CE_x_pLM': -(x_seqs_masked * LM_out_logprobs).sum(-1).mean(-1),
}
LM_loss = sum(w * losses[name] for name, w in LM_losses.items())
return LM_loss, LM_out_logprobs, losses
def calc_ngram_loss(self, x_seqs, ngram_orders=[1,2,3,4]):
B = x_seqs.size(0)
ngram_loss = torch.zeros(B).to(x_seqs)
seqs = self.decode(x_seqs)
for order in ngram_orders:
for i in range(len(seqs)):
ngram_loss[i] += ngram_utils.compute_kl_div(seqs[i], order)
return ngram_loss # [B]
def calc_structure_loss(self, x_seq, temp_struct=None):
"""Maps x_seq to the structure loss"""
B, L, K = x_seq.shape
res_preds = self.struct_model(x_seq)
if temp_struct is not None:
# Apply temp to res_preds output
for coord in COORDS4D_NAMES:
res_preds[f'{coord}_logits'] /= temp_struct
res_preds[f'p_{coord}'] = res_preds[f'{coord}_logits'].softmax(-1)
# Mask handling
mask = torch.ones_like(self.coords[:, 0, :, :]).bool()
target_pos_mask = self.target_contacts[None] # [1, L, L]
target_neg_mask = self.target_no_contacts[None] # [1, L, L]
target_pos_mask &= mask
target_neg_mask &= mask
# The below is also: self.valid_contacts & mask
target_all_mask = target_pos_mask | target_neg_mask
loss_dict = {}
targets = ['dist']
if not self.target_no_angles:
targets += COORDS_ANGLE_NAMES
for i, targetname in enumerate(targets):
target = self.coords[:, i, :, :]
if target.size(0) == 1:
res_preds_B = res_preds['p_dist'].shape[0]
target = target.repeat(res_preds_B, 1, 1)
else:
assert_shape(target, B, L, L)
loss_dict[f'{targetname}_cce'] = get_cce_loss(res_preds[f'p_{targetname}'], target, target_all_mask)
cce_pos = get_cce_loss(res_preds[f'p_{targetname}'], target, target_pos_mask)
cce_neg = get_cce_loss(res_preds[f'p_{targetname}'], target, target_neg_mask)
loss_dict[f'{targetname}_cce_norm_avg'] = (cce_pos + cce_neg) / 2
loss_dict[f'{targetname}_cce_pos'] = cce_pos
CHOSEN_LOSSES = ['dist_cce_pos'] # Worked best in our experiments
total_loss = sum(loss_dict[k] for k in CHOSEN_LOSSES)
return total_loss, loss_dict
def calc_total_loss(
self,
x,
mask,
LM_w,
struct_w,
ngram_w, ngram_orders,
temp_struct=None):
"""
Easy one-stop-shop that calls out to all the implemented loss calculators,
aggregates logs, and weights total_loss.
As a refresher:
calc_sequence_loss:
calculates \sum log p(x_i|x_\i) for i in {set bits in mask}.
If mask is all ones, this is equal to Pseudo-log-likelihood.
NOTE: every position in mask is masked *separately*
Therefore, there will be multiple forward passes of the LM.
calc_structure_loss:
calculates p(y|x)
calc_ngram_loss:
calculates p_ngram(x)
"""
if mask is not None:
assert_valid_mask(mask, x=x)
logs = {}
total_loss = torch.zeros(x.size(0)).to(x)
if LM_w:
lm_m_nlls, _, lm_loss_dict = self.calc_sequence_loss(x, mask=mask)
lm_m_nlls *= LM_w / self.L
total_loss += lm_m_nlls
logs['lm_loss'] = lm_m_nlls
logs.update(lm_loss_dict)
if struct_w:
struct_m_nlls, struct_loss_dict = self.calc_structure_loss(x, temp_struct=temp_struct)
struct_m_nlls *= struct_w
total_loss += struct_m_nlls
logs['struct_loss'] = struct_m_nlls
logs.update(struct_loss_dict)
if ngram_w:
ngram_m_nlls = self.calc_ngram_loss(x, ngram_orders=ngram_orders)
ngram_m_nlls *= ngram_w
total_loss += ngram_m_nlls
logs['ngram_loss'] = ngram_m_nlls
return total_loss, logs # [B], Dict[str:[B]]
##########################################
# YAML Execution
##########################################
def run_from_cfg(self):
"""
Main run-loop for the Designer. Runs a relevant design procedure from the config.
"""
logger.info(f'Designing sequence for task: {self.cfg.task}')
design_cfg = self.cfg.tasks[self.cfg.task]
if self.cfg.task == 'fixedbb':
stage_fixedbb(self, design_cfg)
elif self.cfg.task == 'free_generation':
stage_free_generation(self, **design_cfg)
else:
raise ValueError(f'Invalid task: {self.cfg.task}')
logger.info(f'Final designed sequences:')
for seq in self.decode(self.x_seqs):
logger.info(seq)
self.output_seq = self.decode(self.x_seqs)[0]
def init_schedulers_from_cfg(self, cfg: DictConfig):
"""
Similar to init_schedulers, but expects a stage-specific DictConfig.
Populates self.schedulers with dotlist key.
(Simplifies later OmegaConf accesses)
Example:
cfg = {
num_iter: 10,
sub_cfg: {
my_sched: {
scheduler: CosineAnnealingLR
initial: 1e-2
T_max: 200}}}
Effect:
self.schedulers['sub_cfg.my_sched'] = <Scheduler>
"""
def walk_cfg(d, parent_key='', sep='.'):
from collections.abc import MutableMapping
for k, v in d.items():
new_key = parent_key + sep + k if parent_key else k
yield (new_key, v)
if isinstance(v, MutableMapping):
yield from walk_cfg(v, new_key, sep=sep)
from typing import Optional, Dict, List, Any, Union
def is_sspec(maybe_sspec: Union[SchedulerSpec, Any]):
infer_from_key = (isinstance(maybe_sspec, DictConfig)
and maybe_sspec.get('scheduler', None) is not None)
# infer_from_type = OmegaConf.get_type(maybe_sspec) is SchedulerSpec
return infer_from_key
if not self.resuming_stage:
for name, maybe_sspec in walk_cfg(cfg, sep='.'):
if is_sspec(maybe_sspec):
assert not name in self.schedulers, f"Trying to re-register {name}"
self.schedulers[name] = to_scheduler(maybe_sspec)
def gen_step_cfg(self, cfg):
"""
Replace schedulers in a cfg with step-specific values.
Make sure to call `init_schedulers_from_cfg(cfg)` first!
Uses Designer state:
- self.schedulers
"""
step_cfg = cfg.copy()
for name, sched in self.schedulers.items():
if OmegaConf.select(step_cfg, name) is not None:
OmegaConf.update(step_cfg, name, sched(), merge=False)
return step_cfg
def stepper(self, iterable, update_schedulers=True, cfg=None):
self.init_schedulers_from_cfg(cfg)
for local_step in iterable:
yield local_step, self.gen_step_cfg(cfg)
if update_schedulers:
self.update_schedulers()
def update_schedulers(self):
for s in self.schedulers.values():
try:
s.step()
except AttributeError:
pass # constants: dummy lambda
def init_schedulers(self, **kwargs):
"""
Schedulers (always stage-specific) are initialized according to SchedulerSpec,
and depend on global_step
Optionally wrapping an optimizer class with single param group.
Stores the schedulers in self._schedulers
Returns:
functions which return the current value for each
"""
set_scheduler_repo(self.cfg.get('schedulers', {}))
for name, sspec in kwargs.items():
assert not name in self.schedulers, f"Trying to re-register {name}"
self.schedulers[name] = to_scheduler(sspec)
assert sys.version_info >= (3, 6), "py>=3.6 preserve kwarg and dict order see PEP468"
return [self.schedulers[name] for name in kwargs]
@hydra.main(config_path="conf/", config_name="config")
def main(cfg: DictConfig) -> None:
args_no_spaces = [arg.replace(" ", "") for arg in sys.argv[1:]]
logger.info(f"Running with args: {' '.join(args_no_spaces)}")
pdb_fn = cfg.pdb_fn
logger.info(f'Starting to optimize seq for {pdb_fn}')
start_time = time.time()
des = Designer(cfg, pdb_fn)
des.run_from_cfg()
logger.info("finished after %s hours", (time.time() - start_time) / 3600)
if __name__ == "__main__":
main() # noqa pylint: disable=no-value-for-parameter