forked from OpenFAST/openfast_toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubdyn.py
908 lines (816 loc) · 43.4 KB
/
subdyn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
"""
Tools for SubDyn
- Setup a FEM model, compute Guyan and CB modes
- Get a dataframe with properties
- More todo
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import copy
import re
# Local
from openfast_toolbox.io.fast_input_file import FASTInputFile
from openfast_toolbox.tools.tictoc import Timer
idGuyanDamp_None = 0
idGuyanDamp_Rayleigh = 1
idGuyanDamp_66 = 2
class SubDyn:
def __init__(self, sdFilename_or_data=None):
"""
Initialize a SubDyn object either with:
- sdFilename: a subdyn input file name
- sdData: an instance of FASTInputFile
"""
self._graph=None
self.File=None
# Read SubDyn file
if sdFilename_or_data is not None:
if hasattr(sdFilename_or_data,'startswith'): # if string
self.File = FASTInputFile(sdFilename_or_data)
else:
self.File = sdFilename_or_data
self.M_tip=None
# Internal
self._graph=None
self._mgraph=None # Member graph
self._FEM=None
def __repr__(self):
s='<{} object>:\n'.format(type(self).__name__)
s+='|properties:\n'
s+='|- File: (input file data)\n'
s+='|* graph: (Nodes/Elements/Members)\n'
s+='|* pointsMJ, pointsMN, pointsMNout\n'
s+='|methods:\n'
s+='|- memberPostPro\n'
s+='|- setTopMass\n'
s+='|- beamDataFrame, beamFEM, beamModes\n'
s+='|- toYAMSData\n'
return s
# --------------------------------------------------------------------------------}
# --- Functions for general FEM model (jacket, flexible floaters)
# --------------------------------------------------------------------------------{
def init(self, TP=(0,0,0), gravity = 9.81):
"""
Initialize SubDyn FEM model
TP: position of transition point
gravity: position of transition point
"""
import welib.FEM.fem_beam as femb
import welib.FEM.fem_model as femm
BC = 'clamped-free' # TODO Boundary condition: free-free or clamped-free
element = 'frame3d' # Type of element used in FEM
FEMMod = self.File['FEMMod']
if FEMMod==1:
mainElementType='frame3d'
elif FEMMod==2:
mainElementType='frame3dlin'
elif FEMMod==3:
mainElementType='timoshenko'
else:
raise NotImplementedError()
# Get graph
graph = self.graph
#print('>>> graph\n',graph)
#graph.toJSON('_GRAPH.json')
# Convert to FEM model
with Timer('From graph'):
FEM = femm.FEMModel.from_graph(self.graph, mainElementType=mainElementType, refPoint=TP, gravity=gravity)
#model.toJSON('_MODEL.json')
with Timer('Assembly'):
FEM.assembly()
with Timer('Internal constraints'):
FEM.applyInternalConstraints()
FEM.partition()
with Timer('BC'):
FEM.applyFixedBC()
with Timer('EIG'):
Q, freq = FEM.eig(normQ='byMax')
with Timer('CB'):
FEM.CraigBampton(nModesCB = self.File['Nmodes'])
with Timer('Modes'):
FEM.setModes(nModesFEM=30, nModesCB=self.File['Nmodes'])
# FEM.nodesDisp(Q)
# --- SubDyn partition/notations
FEM.MBB = FEM.MM_CB[np.ix_(FEM.DOF_Leader_CB , FEM.DOF_Leader_CB)]
FEM.KBB = FEM.KK_CB[np.ix_(FEM.DOF_Leader_CB , FEM.DOF_Leader_CB)]
FEM.MBM = FEM.MM_CB[np.ix_(FEM.DOF_Leader_CB , FEM.DOF_Follower_CB)]
FEM.KMM = FEM.KK_CB[np.ix_(FEM.DOF_Follower_CB, FEM.DOF_Follower_CB)]
zeta =self.File['JDampings']/100
if not hasattr(zeta,'__len__'):
zeta = [zeta]*FEM.nModesCB
FEM.CMM = 2*np.array(zeta) * FEM.f_CB * 2 * np.pi
# --- Matrices wrt TP point
TI=FEM.T_refPoint
MBBt = TI.T.dot(FEM.MBB).dot(TI)
KBBt = TI.T.dot(FEM.KBB).dot(TI)
MBBt[np.abs(MBBt)<1e-4] =0
KBBt[np.abs(KBBt)<1e-4] =0
FEM.MBBt = MBBt
FEM.KBBt = KBBt
# --- Set Damping
dampMod = self.File['GuyanDampMod']
alpha_Rayleigh, beta_Rayleigh = None, None
# 6x6 Guyan Damping matrix
CC_CB_G = None
if dampMod == idGuyanDamp_None:
FEM.CBBt = np.zeros((6,6))
elif dampMod == idGuyanDamp_Rayleigh:
# Rayleigh Damping
alpha_Rayleigh, beta_Rayleigh = self.File['RayleighDamp']
FEM.CBBt = alpha_Rayleigh * FEM.MBBt + beta_Rayleigh * FEM.KBBt
elif dampMod == idGuyanDamp_66:
FEM.CBBt = self.File['GuyanDampMatrix']
else:
raise Exception()
# --- Compute rigid body equivalent
FEM.rigidBodyEquivalent()
self._FEM = FEM
return FEM
def setTopMass(self):
# TODO
# Add an optional top mass and ineria
if TopMass:
# NOTE: you can use welib.yams.windturbine to compute RNA mass and inertia
Mtop = 50000 # Top mass [kg]
M_tip= rigidBodyMassMatrixAtP(m=Mtop, J_G=None, Ref2COG=None)
else:
M_tip=None
def getGraph(self, nDiv=1):
# See welib.weio.fast_input_file_graph.py to see how SubDyn files are converted to graph
# See welib.fem.graph.py for Graph interface
_graph = self.File.toGraph().divideElements(nDiv,
excludeDataKey='Type', excludeDataList=['Cable','Rigid'], method='insert',
keysNotToCopy=['IBC','RBC','addedMassMatrix'] # Very important
)
if len(_graph.Members)==0:
raise Exception('Problem in graph subdivisions, no members found.')
# Sanitization
#idBC_Fixed = 0 # Fixed BC
#idBC_Internal = 10 # Free/Internal BC
#idBC_Leader = 20 # Leader DOF
MapIBC={0:0, 1:20} # 1 in the input file is leader
MapRBC={0:10, 1:0} # 1 in the input file is fixed
for n in _graph.Nodes:
#print(n)
if 'IBC' in n.data.keys():
IBC = n.data['IBC'].copy()
n.data['IBC'] = [MapIBC[i] for i in IBC[:6]]
if 'RBC' in n.data.keys():
RBC = n.data['RBC'].copy()
n.data['RBC'] = [MapRBC[i] for i in RBC[:6]]
if any(RBC[:6])==0:
print('RBC ',RBC)
print('n.data[RBC]',n.data['RBC'] )
print('n ',n )
raise NotImplementedError('SSI')
return _graph
@property
def graph(self):
if self._graph is None:
self._graph = self.getGraph(nDiv = self.File['NDiv'])
return copy.deepcopy(self._graph)
@property
def pointsMJ(self):
""" return a dataframe with the coordinates of all members and joints
The index corresponds to the SubDyn outputs "M_J_XXX"
"""
Joints=[]
labels =[]
graph = self.graph
for ie,M in enumerate(graph.Members): # loop on members
Nodes = M.getNodes(graph)
for iN,N in enumerate([Nodes[0], Nodes[-1]]):
s='M{}J{}'.format(ie+1, iN+1)
Joints.append([N.x,N.y,N.z])
labels.append(s)
df =pd.DataFrame(data=np.asarray(Joints), index=labels, columns=['x','y','z'])
return df
@property
def pointsMN(self):
""" return a dataframe with the coordinates of all members and nodes
The index would correspond to the SubDyn outputs "M_N_XXX *prior* to the user selection"
"""
Nodes=[]
labels =[]
graph = self.graph
for im,M in enumerate(graph.Members): # loop on members
nodes = M.getNodes(graph)
for iN,N in enumerate(nodes): # Loop on member nodes
s='M{}N{}'.format(im+1, iN+1)
Nodes.append([N.x,N.y,N.z])
labels.append(s)
df =pd.DataFrame(data=np.asarray(Nodes), index=labels, columns=['x','y','z'])
return df
@property
def pointsMNout(self):
""" return a dataframe with the coordinates of members and nodes requested by user
The index corresponds to the SubDyn outputs "M_N_XXX selected by the user"
"""
Nodes=[]
labels =[]
graph = self.graph
for im, out in enumerate(self.File['MemberOuts']):
mID = out[0] # Member ID
iNodes = np.array(out[2:])-1 # Node positions within member (-1 for python indexing)
nodes = graph.getMemberNodes(mID)
nodes = np.array(nodes)[iNodes]
for iN,N in enumerate(nodes): # Loop on selected nodes
s='M{}N{}'.format(im+1, iN+1)
Nodes.append([N.x,N.y,N.z])
labels.append(s)
df =pd.DataFrame(data=np.asarray(Nodes), index=labels, columns=['x','y','z'])
return df
def memberPostPro(self, dfAvg):
"""
Convert a dataframe of SubDyn/OpenFAST outputs (time-averaged)
with columns such as: M_N_* and M_J_*
into a dataframe that is organized by main channel name and nodal coordinates.
The scripts taken into account with member ID and node the user requested as outputs channels.
Discretization (nDIV) is also taken into account.
For instance:
dfAvg with columns = ['M1N1MKye_[N*m]', 'M1N2MKye_[N*m]', 'M1N1TDxss_[m]']
returns:
MNout with columns ['x', 'y', 'z', 'MKye_[Nm]', 'TDxss_[m]']
and index ['M1N1', 'M1N2']
with x,y,z the undisplaced nodal positions (accounting for discretization)
INPUTS:
- dfAvg: a dataframe of time-averaged SubDyn/OpenFAST outputs, for instance obtained as:
df = FASTInputFile(filename).toDataFrame()
dfAvg = postpro.averageDF(df, avgMethod=avgMethod ,avgParam=avgParam)
OUTPUTS
- MNout: dataframe of members outputs (requested by the user)
- MJout: dataframe of joints outputs
"""
import welib.fast.postpro as postpro # Import done here to avoid circular dependency
# --- Get Points where output are requested
MJ = self.pointsMJ
MNo= self.pointsMNout
MJ.columns = ['x_[m]','y_[m]', 'z_[m]']
MNo.columns = ['x_[m]','y_[m]', 'z_[m]']
# --- Requested Member Outputs
Map={}
Map['^'+r'M(\d*)N(\d*)TDxss_\[m\]'] = 'TDxss_[m]'
Map['^'+r'M(\d*)N(\d*)TDyss_\[m\]'] = 'TDyss_[m]'
Map['^'+r'M(\d*)N(\d*)TDzss_\[m\]'] = 'TDzss_[m]'
Map['^'+r'M(\d*)N(\d*)RDxe_\[rad\]'] = 'RDxe_[deg]' # NOTE rescale needed
Map['^'+r'M(\d*)N(\d*)RDye_\[rad\]'] = 'RDye_[deg]' # NOTE rescale needed
Map['^'+r'M(\d*)N(\d*)RDze_\[rad\]'] = 'RDze_[deg]' # NOTE rescale needed
Map['^'+r'M(\d*)N(\d*)FKxe_\[N\]'] = 'FKxe_[N]'
Map['^'+r'M(\d*)N(\d*)FKye_\[N\]'] = 'FKye_[N]'
Map['^'+r'M(\d*)N(\d*)FKze_\[N\]'] = 'FKze_[N]'
Map['^'+r'M(\d*)N(\d*)MKxe_\[N\*m\]'] = 'MKxe_[Nm]'
Map['^'+r'M(\d*)N(\d*)MKye_\[N\*m\]'] = 'MKye_[Nm]'
Map['^'+r'M(\d*)N(\d*)MKze_\[N\*m\]'] = 'MKze_[Nm]'
ColsInfo, _ = postpro.find_matching_columns(dfAvg.columns, Map)
nCols = len(ColsInfo)
if nCols>0:
newCols=[c['name'] for c in ColsInfo ]
ValuesM = pd.DataFrame(index=MNo.index, columns=newCols)
for ic,c in enumerate(ColsInfo):
Idx, cols, colname = c['Idx'], c['cols'], c['name']
labels = [re.match(r'(^M\d*N\d*)', s)[0] for s in cols]
ValuesM.loc[labels,colname] = dfAvg[cols].values.flatten()
if 'deg' in colname and 'rad' in cols[0]:
ValuesM[colname] *= 180/np.pi
# We remove lines that are all NaN
Values = ValuesM.dropna(axis = 0, how = 'all')
MNo2 = MNo.loc[Values.index]
MNout = pd.concat((MNo2, Values), axis=1)
else:
MNout = None
# --- Joint Outputs
Map={}
Map['^'+r'M(\d*)J(\d*)FKxe_\[N\]'] ='FKxe_[N]'
Map['^'+r'M(\d*)J(\d*)FKye_\[N\]'] ='FKye_[N]'
Map['^'+r'M(\d*)J(\d*)FKze_\[N\]'] ='FKze_[N]'
Map['^'+r'M(\d*)J(\d*)MKxe_\[N\*m\]']='MKxe_[Nm]'
Map['^'+r'M(\d*)J(\d*)MKye_\[N\*m\]']='MKye_[Nm]'
Map['^'+r'M(\d*)J(\d*)MKze_\[N\*m\]']='MKze_[Nm]'
Map['^'+r'M(\d*)J(\d*)FMxe_\[N\]'] ='FMxe_[N]'
Map['^'+r'M(\d*)J(\d*)FMye_\[N\]'] ='FMye_[N]'
Map['^'+r'M(\d*)J(\d*)FMze_\[N\]'] ='FMze_[N]'
Map['^'+r'M(\d*)J(\d*)MMxe_\[N\*m\]']='MMxe_[Nm]'
Map['^'+r'M(\d*)J(\d*)MMye_\[N\*m\]']='MMye_[Nm]'
Map['^'+r'M(\d*)J(\d*)MMze_\[N\*m\]']='MMze_[Nm]'
ColsInfo, _ = postpro.find_matching_columns(dfAvg.columns, Map)
nCols = len(ColsInfo)
if nCols>0:
newCols=[c['name'] for c in ColsInfo ]
ValuesJ = pd.DataFrame(index=MJ.index, columns=newCols)
for ic,c in enumerate(ColsInfo):
Idx, cols, colname = c['Idx'], c['cols'], c['name']
labels = [re.match(r'(^M\d*J\d*)', s)[0] for s in cols]
ValuesJ.loc[labels,colname] = dfAvg[cols].values.flatten()
# We remove lines that are all NaN
Values = ValuesJ.dropna(axis = 0, how = 'all')
MJ2 = MJ.loc[Values.index]
MJout = pd.concat((MJ2, Values), axis=1)
else:
MJout = None
return MNout, MJout
# --------------------------------------------------------------------------------}
# --- Functions for beam-like structure (Spar, Monopile)
# --------------------------------------------------------------------------------{
def beamDataFrame(self, equispacing=False):
""" """
# --- Parameters
UseSubDynModel=True
TopMass = False
# Convert to "welib.fem.Graph" class to easily handle the model (overkill for a monopile)
locgraph = self.graph.sortNodesBy('z')
# Add nodal properties from propsets (NOTE: Not done anymore by SubDyn because a same node can have different diameters...)
for e in locgraph.Elements:
locgraph.setElementNodalProp(e, propset=e.propset, propIDs=e.propIDs)
df = locgraph.nodalDataFrame()
if equispacing:
from welib.tools.pandalib import pd_interp1
# Interpolate dataframe to equispaced values
xOld = df['z'] # NOTE: FEM uses "x" as main axis
nSpan = len(xOld)
x = np.linspace(np.min(xOld),np.max(xOld), nSpan)
df = pd_interp1(x, 'z', df)
x = df['z'] # NOTE: FEM uses "x" as main axis
D = df['D'] # Diameter [m]
t = df['t'] # thickness [m]
# Derive section properties for a hollow cylinder based on diameter and thickness
A = np.pi*( (D/2)**2 - (D/2-t)**2) # Area for annulus [m^2]
I = np.pi/64*(D**4-(D-2*t)**4) # Second moment of area for annulus (m^4)
Kt = I # Torsion constant, same as I for annulus [m^4]
Ip = 2*I # Polar second moment of area [m^4]
df['A'] = A
df['I'] = I
df['Kt'] = Kt
df['Ip'] = Ip
df['m'] = df['rho'].values*A
return df
def beamFEM(self, df=None):
""" return FEM model for beam-like structures, like Spar/Monopile"""
import welib.FEM.fem_beam as femb
BC = 'clamped-free' # TODO Boundary condition: free-free or clamped-free
element = 'frame3d' # Type of element used in FEM
if df is None:
df = self.beamDataFrame()
x = df['z'] # NOTE: FEM uses "x" as main axis
E = df['E'] # Young modules [N/m^2]
G = df['G'] # Shear modules [N/m^2]
rho = df['rho'] # material density [kg/m^3]
Ip = df['Ip']
I = df['I']
A = df['A']
Kt = df['Kt']
# --- Compute FEM model and mode shapes
with Timer('Setting up FEM model'):
FEM=femb.cbeam(x,m=rho*A,EIx=E*Ip,EIy=E*I,EIz=E*I,EA=E*A,A=A,E=E,G=G,Kt=Kt,
element=element, BC=BC, M_tip=self.M_tip)
return FEM
def beamModes(self, nCB=8, FEM = None):
""" Returns mode shapes for beam-like structures, like Spar/Monopile """
import welib.FEM.fem_beam as femb
element = 'frame3d' # Type of element used in FEM
if FEM is None:
FEM = self.beamFEM()
# --- Perform Craig-Bampton reduction, fixing the top node of the beam
with Timer('FEM eigenvalue analysis'):
Q_G,_Q_CB, df_G, df_CB, Modes_G, Modes_CB, CB = femb.CB_topNode(FEM, nCB=nCB, element=element, main_axis='x')
# df_CB.to_csv('_CB.csv',index=False)
# df_G.to_csv('_Guyan.csv',index=False)
return Q_G,_Q_CB, df_G, df_CB, Modes_G, Modes_CB, CB
def beamModesPlot(self):
""" """
# TODO
nModesPlot=8
# --- Show frequencies to screen
print('Mode Frequency Label ')
for i in np.arange(8):
print('{:4d} {:10.3f} {:s}'.format(i+1,FEM['freq'][i],FEM['modeNames'][i]))
# --- Plot mode components for first few modes
print(x.shape)
#Q=FEM['Q'] ; modeNames = FEM['modeNames']
#Q=Q_CB ;modeNames = names_CB
Modes=Modes_CB
nModesPlot=min(len(Modes),nModesPlot)
fig,axes = plt.subplots(1, nModesPlot, sharey=False, figsize=(12.4,2.5))
fig.subplots_adjust(left=0.04, right=0.98, top=0.91, bottom=0.11, hspace=0.40, wspace=0.30)
for i in np.arange(nModesPlot):
key= list(Modes.keys())[i]
axes[i].plot(x, Modes[key]['comp'][:,0] ,'-' , label='ux')
axes[i].plot(x, Modes[key]['comp'][:,1] ,'-' , label='uy')
axes[i].plot(x, Modes[key]['comp'][:,2] ,'-' , label='uz')
axes[i].plot(x, Modes[key]['comp'][:,3] ,':' , label='vx')
axes[i].plot(x, Modes[key]['comp'][:,4] ,':' , label='vy')
axes[i].plot(x, Modes[key]['comp'][:,5] ,':' , label='vz')
axes[i].set_xlabel('')
axes[i].set_ylabel('')
axes[i].set_title(Modes[key]['label'])
if i==0:
axes[i].legend()
# --------------------------------------------------------------------------------}
# --- IO/Converters
# --------------------------------------------------------------------------------{
def toYAML(self, filename):
if self._FEM is None:
raise Exception('Call `initFEM()` before calling `toYAML`')
subdyntoYAMLSum(self._FEM, filename, more = self.File['OutAll'])
def toYAMSData(self, shapes=[0,4], main_axis='z'):
"""
Convert to Data needed to setup a Beam Model in YAMS (see bodies.py in yams)
"""
from welib.mesh.gradient import gradient_regular
# --- Perform Craig-Bampton reduction, fixing the top node of the beam
# Get beam data frame
df = self.beamDataFrame(equispacing=True)
if np.any(df['y']!=0):
raise NotImplementedError('FASTBeamBody for substructure only support monopile, structure not fully vertical in file: {}'.format(self.File.filename))
if np.any(df['x']!=0):
raise NotImplementedError('FASTBeamBody for substructure only support monopile, structure not fully vertical in file: {}'.format(self.File.filename))
FEM = self.beamFEM(df)
Q_G,_Q_CB, df_G, df_CB, Modes_G, Modes_CB, CB = self.beamModes(nCB=0, FEM=FEM)
x = df['z'].values
nSpan = len(x)
# TODO TODO finda way to use these matrices instead of the ones computed with flexibility
#print('CB MM\n',CB['MM'])
#print('CB KK\n',CB['KK'])
# --- Setup shape functions
if main_axis=='x':
raise NotImplementedError('')
else:
pass
# we need to swap the CB modes
nShapes=len(shapes)
PhiU = np.zeros((nShapes,3,nSpan)) # Shape
PhiV = np.zeros((nShapes,3,nSpan)) # Shape
PhiK = np.zeros((nShapes,3,nSpan)) # Shape
dx=np.unique(np.around(np.diff(x),4))
if len(dx)>1:
print(x)
print(dx)
raise NotImplementedError()
for iShape, idShape in enumerate(shapes):
if idShape==0:
# shape 0 "ux" (uz in FEM)
PhiU[iShape][0,:] = df_G['G3_uz'].values
PhiV[iShape][0,:] =-df_G['G3_ty'].values
PhiK[iShape][0,:] = gradient_regular(PhiV[iShape][0,:],dx=dx[0],order=4)
elif idShape==1:
# shape 1, "uy"
PhiU[iShape][1,:] = df_G['G2_uy'].values
PhiV[iShape][1,:] = df_G['G2_tz'].values
PhiK[iShape][1,:] = gradient_regular(PhiV[iShape][1,:],dx=dx[0],order=4)
elif idShape==4:
# shape 4, "vy" (vz in FEM)
PhiU[iShape][0,:] = df_G['G6_uy'].values
PhiV[iShape][0,:] = df_G['G6_tz'].values
PhiK[iShape][0,:] = gradient_regular(PhiV[iShape][0,:],dx=dx[0],order=4)
else:
raise NotImplementedError()
# --- Dictionary structure for YAMS
p=dict()
p['s_span']=x-np.min(x)
p['s_P0']=np.zeros((3,nSpan))
if main_axis=='z':
p['s_P0'][2,:]=x-np.min(x)
p['r_O'] = (df['x'].values[0], df['y'].values[0], df['z'].values[0])
p['R_b2g'] = np.eye(3)
p['m'] = df['m'].values
p['EI'] = np.zeros((3,nSpan))
if main_axis=='z':
p['EI'][0,:]=df['E'].values*df['I'].values
p['EI'][1,:]=df['E'].values*df['I'].values
p['jxxG'] = df['rho']*df['Ip'] # TODO verify
p['s_min'] = p['s_span'][0]
p['s_max'] = p['s_span'][-1]
p['PhiU'] = PhiU
p['PhiV'] = PhiV
p['PhiK'] = PhiK
# --- Damping
damp_zeta = None
RayleighCoeff = None
DampMat = None
if self.File['GuyanDampMod']==1:
# Rayleigh Damping
RayleighCoeff=self.File['RayleighDamp']
#if RayleighCoeff[0]==0:
# damp_zeta=omega*RayleighCoeff[1]/2.
elif self.File['GuyanDampMod']==2:
# Full matrix
DampMat = self.File['GuyanDampMatrix']
DampMat=DampMat[np.ix_(shapes,shapes)]
return p, damp_zeta, RayleighCoeff, DampMat
# --------------------------------------------------------------------------------}
# --- Export of summary file and Misc FEM variables used by SubDyn
# --------------------------------------------------------------------------------{
def yaml_array(var, M, Fmt='{:15.6e}', comment=''):
M = np.atleast_2d(M)
if len(comment)>0:
s='{}: # {} x {} {}\n'.format(var, M.shape[0], M.shape[1], comment)
else:
s='{}: # {} x {}\n'.format(var, M.shape[0], M.shape[1])
if M.shape[0]==1:
if M.shape[1]==0:
s+= ' - [ ]\n'
else:
for l in M:
s+= ' - [' + ','.join([Fmt.format(le) for le in l]) + ',]\n'
else:
for l in M:
s+= ' - [' + ','.join([Fmt.format(le) for le in l]) + ']\n'
s = s.replace('e+','E+').replace('e-','E-')
return s
def subdynPartitionVars(model):
from welib.FEM.fem_elements import idDOF_Leader, idDOF_Fixed, idDOF_Internal
# --- Count nodes per types
nNodes = len(model.Nodes)
nNodes_I = len(model.interfaceNodes)
nNodes_C = len(model.reactionNodes)
nNodes_L = len(model.internalNodes)
# --- Partition Nodes: Nodes_L = IAll - NodesR
Nodes_I = [n.ID for n in model.interfaceNodes]
Nodes_C = [n.ID for n in model.reactionNodes]
Nodes_R = Nodes_I + Nodes_C
Nodes_L = [n.ID for n in model.Nodes if n.ID not in Nodes_R]
# --- Count DOFs - NOTE: we count node by node
nDOF___ = sum([len(n.data['DOFs_c']) for n in model.Nodes])
# Interface DOFs
nDOFI__ = sum([len(n.data['DOFs_c']) for n in model.interfaceNodes])
nDOFI_B = sum([sum(np.array(n.data['IBC'])==idDOF_Leader) for n in model.interfaceNodes])
nDOFI_F = sum([sum(np.array(n.data['IBC'])==idDOF_Fixed ) for n in model.interfaceNodes])
if nDOFI__!=nDOFI_B+nDOFI_F: raise Exception('Wrong distribution of interface DOFs')
# DOFs of reaction nodes
nDOFC__ = sum([len(n.data['DOFs_c']) for n in model.reactionNodes])
nDOFC_B = sum([sum(np.array(n.data['RBC'])==idDOF_Leader) for n in model.reactionNodes])
nDOFC_F = sum([sum(np.array(n.data['RBC'])==idDOF_Fixed) for n in model.reactionNodes])
nDOFC_L = sum([sum(np.array(n.data['RBC'])==idDOF_Internal) for n in model.reactionNodes])
if nDOFC__!=nDOFC_B+nDOFC_F+nDOFC_L: raise Exception('Wrong distribution of reaction DOFs')
# DOFs of reaction + interface nodes
nDOFR__ = nDOFI__ + nDOFC__ # Total number, used to be called "nDOFR"
# DOFs of internal nodes
nDOFL_L = sum([len(n.data['DOFs_c']) for n in model.internalNodes])
if nDOFL_L!=nDOF___-nDOFR__: raise Exception('Wrong distribution of internal DOF')
# Total number of DOFs in each category:
nDOF__B = nDOFC_B + nDOFI_B
nDOF__F = nDOFC_F + nDOFI_F
nDOF__L = nDOFC_L + nDOFL_L
# --- Distibutes the I, L, C nodal DOFs into B, F, L sub-categories
# NOTE: order is importatn for compatibility with SubDyn
IDI__ = []
IDI_B = []
IDI_F = []
for n in model.interfaceNodes:
IDI__ += n.data['DOFs_c'] # NOTE: respects order
IDI_B += [dof for i,dof in enumerate(n.data['DOFs_c']) if n.data['IBC'][i]==idDOF_Leader]
IDI_F += [dof for i,dof in enumerate(n.data['DOFs_c']) if n.data['IBC'][i]==idDOF_Fixed ]
IDI__ = IDI_B+IDI_F
IDC__ = []
IDC_B = []
IDC_L = []
IDC_F = []
for n in model.reactionNodes:
IDC__ += n.data['DOFs_c'] # NOTE: respects order
IDC_B += [dof for i,dof in enumerate(n.data['DOFs_c']) if n.data['RBC'][i]==idDOF_Leader ]
IDC_L += [dof for i,dof in enumerate(n.data['DOFs_c']) if n.data['RBC'][i]==idDOF_Internal]
IDC_F += [dof for i,dof in enumerate(n.data['DOFs_c']) if n.data['RBC'][i]==idDOF_Fixed ]
IDR__=IDC__+IDI__
IDL_L = []
for n in model.internalNodes:
IDL_L += n.data['DOFs_c']
# Storing variables similar to SubDyn
SD_Vars={}
SD_Vars['nDOF___']=nDOF___;
SD_Vars['nDOFI__']=nDOFI__; SD_Vars['nDOFI_B']=nDOFI_B; SD_Vars['nDOFI_F']=nDOFI_F;
SD_Vars['nDOFC__']=nDOFC__; SD_Vars['nDOFC_B']=nDOFC_B; SD_Vars['nDOFC_F']=nDOFC_F; SD_Vars['nDOFC_L']=nDOFC_L;
SD_Vars['nDOFR__']=nDOFR__; SD_Vars['nDOFL_L']=nDOFL_L;
SD_Vars['nDOF__B']=nDOF__B; SD_Vars['nDOF__F']=nDOF__F; SD_Vars['nDOF__L']=nDOF__L;
SD_Vars['IDC__']=IDC__;
SD_Vars['IDC_B']=IDC_B;
SD_Vars['IDC_F']=IDC_F;
SD_Vars['IDC_L']=IDC_L;
SD_Vars['IDI__']=IDI__;
SD_Vars['IDR__']=IDR__;
SD_Vars['IDI_B']=IDI_B;
SD_Vars['IDI_F']=IDI_F;
SD_Vars['IDL_L']=IDL_L;
SD_Vars['ID__B']=model.DOFc_Leader
SD_Vars['ID__F']=model.DOFc_Fixed
SD_Vars['ID__L']=model.DOFc_Follower
return SD_Vars
def subdyntoYAMLSum(model, filename, more=False):
"""
Write a YAML summary file, similar to SubDyn
"""
# --- Helper functions
def nodeID(nodeID):
if hasattr(nodeID,'__len__'):
return [model.Nodes.index(model.getNode(n))+1 for n in nodeID]
else:
return model.Nodes.index(model.getNode(nodeID))+1
def elemID(elemID):
#e=model.getElement(elemID)
for ie,e in enumerate(model.Elements):
if e.ID==elemID:
return ie+1
def elemType(elemType):
from welib.FEM.fem_elements import idMemberBeam, idMemberCable, idMemberRigid
return {'SubDynBeam3d':idMemberBeam, 'SubDynFrame3d':idMemberBeam, 'Beam':idMemberBeam, 'Frame3d':idMemberBeam,
'SubDynTimoshenko3d':idMemberBeam,
'SubDynCable3d':idMemberCable, 'Cable':idMemberCable,
'Rigid':idMemberRigid,
'SubDynRigid3d':idMemberRigid}[elemType]
def propID(propID, propset):
prop = model.NodePropertySets[propset]
for ip, p in enumerate(prop):
if p.ID == propID:
return ip+1
SD_Vars = subdynPartitionVars(model)
# --- Helper functions
s=''
s += '#____________________________________________________________________________________________________\n'
s += '# RIGID BODY EQUIVALENT DATA\n'
s += '#____________________________________________________________________________________________________\n'
s0 = 'Mass: {:15.6e} # Total Mass\n'.format(model.M_O[0,0])
s += s0.replace('e+','E+').replace('e-','E-')
s0 = 'CM_point: [{:15.6e},{:15.6e},{:15.6e},] # Center of mass coordinates (Xcm,Ycm,Zcm)\n'.format(model.center_of_mass[0],model.center_of_mass[1],model.center_of_mass[2])
s += s0.replace('e+','E+').replace('e-','E-')
s0 = 'TP_point: [{:15.6e},{:15.6e},{:15.6e},] # Transition piece reference point\n'.format(model.refPoint[0],model.refPoint[1],model.refPoint[2])
s += s0.replace('e+','E+').replace('e-','E-')
s += yaml_array('MRB', model.M_O, comment = 'Rigid Body Equivalent Mass Matrix w.r.t. (0,0,0).')
s += yaml_array('M_P' , model.M_ref,comment = 'Rigid Body Equivalent Mass Matrix w.r.t. TP Ref point')
s += yaml_array('M_G' , model.M_G, comment = 'Rigid Body Equivalent Mass Matrix w.r.t. CM (Xcm,Ycm,Zcm).')
s += '#____________________________________________________________________________________________________\n'
s += '# GUYAN MATRICES at the TP reference point\n'
s += '#____________________________________________________________________________________________________\n'
s += yaml_array('KBBt' , model.KBBt, comment = '')
s += yaml_array('MBBt' , model.MBBt, comment = '')
s += yaml_array('CBBt' , model.CBBt, comment = '(user Guyan Damping + potential joint damping from CB-reduction)')
s += '#____________________________________________________________________________________________________\n'
s += '# SYSTEM FREQUENCIES\n'
s += '#____________________________________________________________________________________________________\n'
s += '#Eigenfrequencies [Hz] for full system, with reaction constraints (+ Soil K/M + SoilDyn K0) \n'
s += yaml_array('Full_frequencies', model.freq)
s += '#Frequencies of Guyan modes [Hz]\n'
s += yaml_array('GY_frequencies', model.f_G)
s += '#Frequencies of Craig-Bampton modes [Hz]\n'
s += yaml_array('CB_frequencies', model.f_CB)
s += '#____________________________________________________________________________________________________\n'
s += '# Internal FEM representation\n'
s += '#____________________________________________________________________________________________________\n'
s += 'nNodes_I: {:7d} # Number of Nodes: "interface" (I)\n'.format(len(model.interfaceNodes))
s += 'nNodes_C: {:7d} # Number of Nodes: "reactions" (C)\n'.format(len(model.reactionNodes))
s += 'nNodes_L: {:7d} # Number of Nodes: "internal" (L)\n'.format(len(model.internalNodes))
s += 'nNodes : {:7d} # Number of Nodes: total (I+C+L)\n'.format(len(model.Nodes))
if more:
s += 'nDOFI__ : {:7d} # Number of DOFs: "interface" (I__)\n'.format(len(SD_Vars['IDI__']))
s += 'nDOFI_B : {:7d} # Number of DOFs: "interface" retained (I_B)\n'.format(len(SD_Vars['IDI_B']))
s += 'nDOFI_F : {:7d} # Number of DOFs: "interface" fixed (I_F)\n'.format(len(SD_Vars['IDI_F']))
s += 'nDOFC__ : {:7d} # Number of DOFs: "reactions" (C__)\n'.format(len(SD_Vars['IDC__']))
s += 'nDOFC_B : {:7d} # Number of DOFs: "reactions" retained (C_B)\n'.format(len(SD_Vars['IDC_B']))
s += 'nDOFC_L : {:7d} # Number of DOFs: "reactions" internal (C_L)\n'.format(len(SD_Vars['IDC_L']))
s += 'nDOFC_F : {:7d} # Number of DOFs: "reactions" fixed (C_F)\n'.format(len(SD_Vars['IDC_F']))
s += 'nDOFR__ : {:7d} # Number of DOFs: "intf+react" (__R)\n'.format(len(SD_Vars['IDR__']))
s += 'nDOFL_L : {:7d} # Number of DOFs: "internal" internal (L_L)\n'.format(len(SD_Vars['IDL_L']))
s += 'nDOF__B : {:7d} # Number of DOFs: retained (__B)\n'.format(SD_Vars['nDOF__B'])
s += 'nDOF__L : {:7d} # Number of DOFs: internal (__L)\n'.format(SD_Vars['nDOF__L'])
s += 'nDOF__F : {:7d} # Number of DOFs: fixed (__F)\n'.format(SD_Vars['nDOF__F'])
s += 'nDOF_red: {:7d} # Number of DOFs: total\n' .format(SD_Vars['nDOF___'])
s += yaml_array('Nodes_I', nodeID([n.ID for n in model.interfaceNodes]), Fmt='{:7d}', comment='"interface" nodes"');
s += yaml_array('Nodes_C', nodeID([n.ID for n in model.reactionNodes ]), Fmt='{:7d}', comment='"reaction" nodes"');
s += yaml_array('Nodes_L', nodeID([n.ID for n in model.internalNodes ]), Fmt='{:7d}', comment='"internal" nodes"');
if more:
s += yaml_array('DOF_I__', np.array(SD_Vars['IDI__'])+1, Fmt='{:7d}', comment = '"interface" DOFs"')
s += yaml_array('DOF_I_B', np.array(SD_Vars['IDI_B'])+1, Fmt='{:7d}', comment = '"interface" retained DOFs')
s += yaml_array('DOF_I_F', np.array(SD_Vars['IDI_F'])+1, Fmt='{:7d}', comment = '"interface" fixed DOFs')
s += yaml_array('DOF_C__', np.array(SD_Vars['IDC__'])+1, Fmt='{:7d}', comment = '"reaction" DOFs"')
s += yaml_array('DOF_C_B', np.array(SD_Vars['IDC_B'])+1, Fmt='{:7d}', comment = '"reaction" retained DOFs')
s += yaml_array('DOF_C_L', np.array(SD_Vars['IDC_L'])+1, Fmt='{:7d}', comment = '"reaction" internal DOFs')
s += yaml_array('DOF_C_F', np.array(SD_Vars['IDC_F'])+1, Fmt='{:7d}', comment = '"reaction" fixed DOFs')
s += yaml_array('DOF_L_L', np.array(SD_Vars['IDL_L'])+1, Fmt='{:7d}', comment = '"internal" internal DOFs')
s += yaml_array('DOF_R_' , np.array(SD_Vars['IDR__'])+1, Fmt='{:7d}', comment = '"interface&reaction" DOFs')
s += yaml_array('DOF___B', np.array(model.DOFc_Leader )+1, Fmt='{:7d}', comment='all retained DOFs');
s += yaml_array('DOF___F', np.array(model.DOFc_Fixed )+1, Fmt='{:7d}', comment='all fixed DOFs');
s += yaml_array('DOF___L', np.array(model.DOFc_Follower)+1, Fmt='{:7d}', comment='all internal DOFs');
s += '\n'
s += '#Index map from DOF to nodes\n'
s += '# Node No., DOF/Node, NodalDOF\n'
s += 'DOF2Nodes: # {} x 3 (nDOFRed x 3, for each constrained DOF, col1: node index, col2: number of DOF, col3: DOF starting from 1)\n'.format(model.nDOFc)
DOFc2Nodes = model.DOFc2Nodes
for l in DOFc2Nodes:
s +=' - [{:7d},{:7d},{:7d}] # {}\n'.format(l[1]+1, l[2], l[3], l[0]+1 )
s += '# Node_[#] X_[m] Y_[m] Z_[m] JType_[-] JDirX_[-] JDirY_[-] JDirZ_[-] JStff_[Nm/rad]\n'
s += 'Nodes: # {} x 9\n'.format(len(model.Nodes))
for n in model.Nodes:
s += ' - [{:7d}.,{:15.3f},{:15.3f},{:15.3f},{:14d}., 0.000000E+00, 0.000000E+00, 0.000000E+00, 0.000000E+00]\n'.format(nodeID(n.ID), n.x, n.y, n.z, int(n.data['Type']) )
s += '# Elem_[#] Node_1 Node_2 Prop_1 Prop_2 Type Length_[m] Area_[m^2] Dens._[kg/m^3] E_[N/m2] G_[N/m2] shear_[-] Ixx_[m^4] Iyy_[m^4] Jzz_[m^4] T0_[N]\n'
s += 'Elements: # {} x 16\n'.format(len(model.Elements))
for e in model.Elements:
I = e.inertias
s0=' - [{:7d}.,{:7d}.,{:7d}.,{:7d}.,{:7d}.,{:7d}.,{:15.3f},{:15.3f},{:15.3f},{:15.6e},{:15.6e},{:15.6e},{:15.6e},{:15.6e},{:15.6e},{:15.6e}]\n'.format(
elemID(e.ID), nodeID(e.nodeIDs[0]), nodeID(e.nodeIDs[1]), propID(e.propIDs[0], e.propset), propID(e.propIDs[1], e.propset), elemType(e.data['Type']),
e.length, e.area, e.rho, e.E, e.G, e.kappa, I[0], I[1], I[2], e.T0)
s += s0.replace('e+','E+').replace('e-','E-')
s += '#____________________________________________________________________________________________________\n'
s += '#User inputs\n'
s += '\n'
s += '#Number of properties (NProps):{:6d}\n'.format(len(model.NodePropertySets['Beam']))
s += '#Prop No YoungE ShearG MatDens XsecD XsecT\n'
for ip,p in enumerate(model.NodePropertySets['Beam']):
s0='#{:8d}{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}\n'.format(p.ID, p['E'],p['G'],p['rho'],p['D'],p['t'])
s += s0.replace('e+','E+').replace('e-','E-')
s +='\n'
s += '#No. of Reaction DOFs:{:6d}\n'.format(len(SD_Vars['IDC__']) )
s += '#React. DOF_ID BC\n'
s += '\n'.join(['#{:10d}{:10s}'.format(idof+1,' Fixed' ) for idof in SD_Vars['IDC_F']])
s += '\n'.join(['#{:10d}{:10s}'.format(idof+1,' Free' ) for idof in SD_Vars['IDC_L']])
s += '\n'.join(['#{:10d}{:10s}'.format(idof+1,' Leader') for idof in SD_Vars['IDC_B']])
s += '\n\n'
s += '#No. of Interface DOFs:{:6d}\n'.format(len(SD_Vars['IDI__']))
s += '#Interf. DOF_ID BC\n'
s += '\n'.join(['#{:10d}{:10s}'.format(idof+1,' Fixed' ) for idof in SD_Vars['IDI_F']])
s += '\n'.join(['#{:10d}{:10s}'.format(idof+1,' Leader') for idof in SD_Vars['IDI_B']])
s += '\n\n'
CM = []
from welib.yams.utils import identifyRigidBodyMM
for n in model.Nodes:
if 'addedMassMatrix' in n.data:
mass, J_G, ref2COG = identifyRigidBodyMM(n.data['addedMassMatrix'])
CM.append( (n.ID, mass, J_G, ref2COG) )
s += '#Number of concentrated masses (NCMass):{:6d}\n'.format(len(CM))
s += '#JointCMas Mass JXX JYY JZZ JXY JXZ JYZ MCGX MCGY MCGZ\n'
for cm in CM:
s0 = '# {:9.0f}.{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}\n'.format( nodeID(cm[0]), cm[1], cm[2][0,0], cm[2][1,1], cm[2][2,2], cm[2][0,1], cm[2][0,2], cm[2][1,2],cm[3][0],cm[3][1],cm[3][2] )
s += s0.replace('e+','E+').replace('e-','E-')
s += '\n'
#s += '#Number of members 18\n'
#s += '#Number of nodes per member: 2\n'
#s += '#Member I Joint1_ID Joint2_ID Prop_I Prop_J Mass Length Node IDs...\n'
#s += '# 77 61 60 11 11 1.045888E+04 2.700000E+00 19 18\n'
#s += '#____________________________________________________________________________________________________\n'
#s += '#Direction Cosine Matrices for all Members: GLOBAL-2-LOCAL. No. of 3x3 matrices= 18\n'
#s += '#Member I DC(1,1) DC(1,2) DC(1,3) DC(2,1) DC(2,2) DC(2,3) DC(3,1) DC(3,2) DC(3,3)\n'
#s += '# 77 1.000E+00 0.000E+00 0.000E+00 0.000E+00 -1.000E+00 0.000E+00 0.000E+00 0.000E+00 -1.000E+00\n'
s += '#____________________________________________________________________________________________________\n'
s += '#FEM Eigenvectors ({} x {}) [m or rad], full system with reaction constraints (+ Soil K/M + SoilDyn K0)\n'.format(*model.Q.shape)
s += yaml_array('Full_Modes', model.Q)
s += '#____________________________________________________________________________________________________\n'
s += '#CB Matrices (PhiM,PhiR) (reaction constraints applied)\n'
s += yaml_array('PhiM', model.Phi_CB[:,:model.nModesCB] ,comment='(CB modes)')
s += yaml_array('PhiR', model.Phi_G, comment='(Guyan modes)')
s += '\n'
if more:
s += '#____________________________________________________________________________________________________\n'
s += '# ADDITIONAL DEBUGGING INFORMATION\n'
s += '#____________________________________________________________________________________________________\n'
s += ''
e = model.Elements[0]
rho=e.rho
A = e.area
L = e.length
t= rho*A*L
s0 = '{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}{:15.6e}\n'.format(model.gravity,e.area, e.length, e.inertias[0], e.inertias[1], e.inertias[2], e.kappa, e.E, e.G, e.rho, t)
s0 = s0.replace('e+','E+').replace('e-','E-')
s += s0
s += yaml_array('KeLocal' +str(), model.Elements[0].Ke(local=True))
for ie,e in enumerate(model.Elements):
s += yaml_array('DC' +str(ie+1), e.DCM.transpose())
s += yaml_array('Ke' +str(ie+1), e.Ke())
s += yaml_array('Me' +str(ie+1), e.Me())
s += yaml_array('FGe'+str(ie+1), e.Fe_g(model.gravity))
s += yaml_array('FCe'+str(ie+1), e.Fe_o())
s += yaml_array('KeLocal' +str(ie+1), e.Ke(local=True))
s += yaml_array('MeLocal' +str(ie+1), e.Me(local=True))
s += yaml_array('FGeLocal'+str(ie+1), e.Fe_g(model.gravity, local=True))
s += yaml_array('FCeLocal'+str(ie+1), e.Fe_o(local=True))
s += '#____________________________________________________________________________________________________\n'
e = model.Elements[0]
s += yaml_array('Ke', e.Ke(local=True), comment='First element stiffness matrix'); # TODO not in local
s += yaml_array('Me', e.Me(local=True), comment='First element mass matrix');
s += yaml_array('FGe', e.Fe_g(model.gravity,local=True), comment='First element gravity vector');
s += yaml_array('FCe', e.Fe_o(local=True), comment='First element cable pretension');
s += '#____________________________________________________________________________________________________\n'
s += '#FULL FEM K and M matrices. TOTAL FEM TDOFs: {}\n'.format(model.nDOF); # NOTE: wrong in SubDyn, should be nDOFc
s += yaml_array('K', model.KK, comment='Stiffness matrix');
s += yaml_array('M', model.MM, comment='Mass matrix');
s += '#____________________________________________________________________________________________________\n'
s += '#Gravity and cable loads applied at each node of the system (before DOF elimination with T matrix)\n'
s += yaml_array('FG', model.FF_init, comment=' ');
s += '#____________________________________________________________________________________________________\n'
s += '#Additional CB Matrices (MBB,MBM,KBB) (constraint applied)\n'
s += yaml_array('MBB' , model.MBB, comment='');
s += yaml_array('MBM' , model.MBM[:,:model.nModesCB], comment='');
s += yaml_array('CMMdiag', model.CMM, comment='(2 Zeta OmegaM)');
s += yaml_array('KBB' , model.KBB, comment='');
s += yaml_array('KMM' , np.diag(model.KMM), comment='(diagonal components, OmegaL^2)');
s += yaml_array('KMMdiag', np.diag(model.KMM)[:model.nModesCB], comment='(diagonal components, OmegaL^2)');
s += yaml_array('PhiL' , model.Phi_CB, comment='');
s += 'PhiLOm2-1: # 18 x 18 \n'
s += 'KLL^-1: # 18 x 18 \n'
s += '#____________________________________________________________________________________________________\n'
s += yaml_array('T_red', model.T_c, Fmt = '{:9.2e}', comment='(Constraint elimination matrix)');
s += 'AA: # 16 x 16 (State matrix dXdx)\n'
s += 'BB: # 16 x 48 (State matrix dXdu)\n'
s += 'CC: # 6 x 16 (State matrix dYdx)\n'
s += 'DD: # 6 x 48 (State matrix dYdu)\n'
s += '#____________________________________________________________________________________________________\n'
s += yaml_array('TI', model.T_refPoint, Fmt = '{:9.2e}',comment='(TP refpoint Transformation Matrix TI)');
if filename is not None:
with open(filename, 'w') as f:
f.write(s)