-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhmtm.py
262 lines (219 loc) · 10.3 KB
/
hmtm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import sys
import numpy as np
from hmm import HMM
from inference.sum_product import SumProduct
from util.util import chunk_seqs_by_size_gen
__author__ = 'sim'
class HMTM(HMM):
"""
Hidden Markov Tree Model (for word clustering): EM variants with sum product message passing for inference
"""
def __init__(self, N, M, params=None, writeout=False, brown_init_path=None, x_dict=None, approx=False,
dirname=None):
super().__init__(N, M, params=params, writeout=writeout, brown_init_path=brown_init_path, x_dict=x_dict,
dirname=dirname)
# sum-product instead of forward-backward
self.inference = SumProduct(approximate=approx)
def em_core(self, dataset, max_iter, logger):
for it in range(1, max_iter + 1):
# E-step
total_ll = 0.0
self.clear_counts()
dataset.train = dataset.prepare_trees_gen()
for c, tree in enumerate(dataset.train, 1):
# prepare tree
self.treerepr_scores(tree)
# obtain node and edge posteriors and ll:
self.inference.compute_posteriors(tree, self.N)
#update counts for that tree
self.update_counts_from_tree(tree)
total_ll += tree.get_ll()
tree.clear_tree()
if c % 1000 == 0:
logger.info("{} sents".format(c))
logger.info("Iter: {}\tLog-likelihood: {}".format(it, total_ll))
self.lls.append(total_ll)
# M-step
self.compute_parameters(logger)
def em_core_online(self, dataset, max_iter, logger):
for it in range(1, max_iter + 1):
total_ll = 0.0
dataset.train = dataset.prepare_trees_gen()
for t, minibatch in enumerate(chunk_seqs_by_size_gen(dataset.train, self.minibatch_size), 0):
# E-step
self.clear_counts()
for tree in minibatch:
# prepare tree
self.treerepr_scores(tree)
#obtain node and edge posteriors and ll:
self.inference.compute_posteriors(tree, self.N)
#update counts for that tree
self.update_counts_from_tree(tree)
total_ll += tree.get_ll()
tree = None
# M-step
self.compute_online_parameters(t)
logger.info("minibatch {} (size {})".format(t, self.minibatch_size))
logger.info("Iter: {}\tLog-likelihood: {}".format(it, total_ll))
self.lls.append(total_ll)
def em_process_multiseq(self, trees):
"""
Makes a local copy of count matrices, the worker updates them for all trees
and finally returns them as yet another partial counts.
"""
try:
total_ll = 0
initial_counts = self.initial_counts
transition_counts = self.transition_counts
final_counts = self.final_counts
emission_counts = self.emission_counts
c = 0
for c, tree in enumerate(trees, 1):
# prepare tree representation
self.treerepr_scores(tree)
# obtain node and edge posteriors and ll:
self.inference.compute_posteriors(tree, self.N)
# update temporary counts
initial_counts += sum([leaf.posterior for leaf in tree.get_leaves()])
for node in tree.get_nonroots():
emission_counts[node.get_name(), :] += node.posterior
for edge in tree.get_edges_not_to_root():
transition_counts += edge.posterior
final_counts += sum([edge.posterior for edge in tree.get_edges_to_root()])
total_ll += tree.get_ll()
tree.clear_tree()
return initial_counts, transition_counts, final_counts, emission_counts, total_ll
except KeyboardInterrupt:
pass
def trellis_scores(self, seq):
raise NotImplementedError()
def treerepr_scores(self, tree):
"""
Tree-analogue to trellis_scores; potentials depend on the relation
:param tree: tree graph
"""
# every leaf gets initial_probs
for leaf in tree.get_leaves():
leaf.set_initial_potentials(np.log(self.initial_probs))
# every node except root gets emission_probs
for node in tree.get_nonroots():
node.set_potentials(np.log(self.emission_probs[node.get_name(), :]))
#every edge gets transition_probs
for edge in tree.get_edges_not_to_root():
edge.set_potentials(np.log(self.transition_probs))
#every edge to # root gets final_probs
for edge in tree.get_edges_to_root():
edge.set_potentials(np.log(self.final_probs))
def update_counts_from_tree(self, tree):
"""
In E-step:
Update the count matrices with partials from one tree
BUG: can overflow because of the large log posteriors in the case of a huge tree
get extremely big when taking exp
TODO: fix by postponing the exp from compute_posteriors() until compute_parameters()
"""
self.initial_counts += sum([leaf.posterior for leaf in tree.get_leaves()])
for node in tree.get_nonroots():
self.emission_counts[node.get_name(), :] += node.posterior
for edge in tree.get_edges_not_to_root():
self.transition_counts += edge.posterior
self.final_counts += sum([edge.posterior for edge in tree.get_edges_to_root()])
def max_product_decode(self, tree):
"""
:param seq: classification sequence instance: tree available through seq.t
"""
# prepare tree for inference
self.treerepr_scores(tree)
# obtain most likely states and ll:
best_states = self.inference.run_max_product(tree, self.N)
return best_states
def max_product_decode_corpus(self, dataset): # TODO: ignore relation option
"""Run Max-product (here, in log space: Max-sum) algorithm for decoding at corpus level.
:param dataset: classification dataset with sequences, each containing tree as seq.t
"""
for c, seq in enumerate(dataset.seq_list):
if seq.t is None:
seq.u = None
continue
# decode and store states to seq.t (tree)
seq.u = self.max_product_decode(seq.t)
seq.t = None
def posterior_decode_corpus(self, dataset, ignore_rel=None):
"""
:param dataset: classification dataset with sequences, each containing tree as seq.t
"""
for c, seq in enumerate(dataset.seq_list):
if seq.t is None:
seq.u = None
continue
# decode and store states to seq.t (tree)
seq.u = self.posterior_decode(seq.t, cont=False, ignore_rel=ignore_rel)
seq.t = None
def posterior_cont_decode_corpus(self, dataset, ignore_rel=None):
"""
:param dataset: classification dataset with sequences, each containing tree as seq.t
"""
for c, seq in enumerate(dataset.seq_list):
if seq.t is None:
seq.u = None
continue
# decode and store states to seq.t (tree)
seq.u = self.posterior_decode(seq.t, cont=True, ignore_rel=ignore_rel)
seq.t = None
def posterior_decode(self, tree, cont, ignore_rel=None):
"""Compute the sequence of states that are individually the most
probable, given the observations. This is done by maximizing
the state posteriors, which are computed with message passing
algorithm on trees."""
# Compute scores given the observation sequence.
self.treerepr_scores(tree)
best_states = self.inference.run_max_posterior(tree, self.N, cont, ignore_rel=ignore_rel)
return best_states
def posterior_cont_type_decode_corpus(self, dataset, rep_dataset, logger=None):
"""Run posterior_decode at corpus level,
return continuous rep per type (avg. over posteriors in all
instances).
:param dataset: evaluation dataset with seq objects
"""
if self.posttypes is None:
if self.dirname is not None:
assert len(dataset.wordrep_dict) == len(rep_dataset.x_dict)
posttype_f = "{}posttype.npy".format(self.dirname)
self.posttypes = np.load(posttype_f) if os.path.exists(posttype_f) else self.obtain_posttypes(
posttype_f, rep_dataset, len(dataset.wordrep_dict), logger=logger)
assert self.posttypes.shape == (len(dataset.wordrep_dict), self.N)
else:
sys.exit("dirname not set properly")
if logger is not None: logger.info("Decoding on eval datasets.")
# assign posteriors to types in dataset
for seq in dataset.seq_list:
if seq.t is None:
print("seq.t is None")
seq.u = None
continue
seq.u = {node.index: self.posttypes[node.name] for node in seq.t.get_nonroots()}
# seq.t not needed, taking space; breaks however the __str__ methods which rely on seq.t
seq.t = None
def obtain_posttypes(self, posttype_f, rep_dataset, n_types, logger=None):
if logger is not None: logger.info("Obtaining posterior type counts.")
# obtain type posteriors
type_posteriors = np.zeros((n_types, self.N))
type_freq = np.zeros(n_types)
for count, tree in enumerate(rep_dataset.train):
# posteriors is dict with keys starting at 1
if tree is None:
continue
if count % 1000 == 0:
if logger is not None:
logger.debug(count)
else:
print(count)
posteriors = self.posterior_decode(tree, cont=True)
for node in tree.get_nonroots():
type_posteriors[node.name, :] += posteriors[node.index]
type_freq[node.name] += 1
#normalize
type_posteriors /= type_freq.reshape(-1, 1)
np.save(posttype_f, type_posteriors)
return type_posteriors