-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun_resp_clinical_models.py
239 lines (202 loc) · 9.63 KB
/
run_resp_clinical_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import warnings
from argparse import ArgumentParser
from glob import glob
from itertools import product
warnings.filterwarnings('ignore', category=FutureWarning,
module='rpy2.robjects.pandas2ri')
import numpy as np
import pandas as pd
import rpy2.rinterface_lib.embedded as r_embedded
r_embedded.set_initoptions(
('rpy2', '--quiet', '--no-save', '--max-ppsize=500000'))
import rpy2.robjects as robjects
from joblib import delayed, dump, Parallel
from rpy2.robjects import numpy2ri, pandas2ri
from rpy2.robjects.packages import importr
from sklearn.exceptions import ConvergenceWarning
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (
auc, average_precision_score, balanced_accuracy_score,
precision_recall_curve, roc_auc_score, roc_curve)
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, StandardScaler
from sklearn.svm import SVC
from tabulate import tabulate
from sklearn_extensions.model_selection import RepeatedStratifiedGroupKFold
numpy2ri.activate()
pandas2ri.activate()
def calculate_test_scores(pipe, X_test, y_test, pipe_predict_params,
test_sample_weights=None):
scores = {}
if hasattr(pipe, 'decision_function'):
y_score = pipe.decision_function(X_test, **pipe_predict_params)
else:
y_score = pipe.predict_proba(X_test, **pipe_predict_params)[:, 1]
scores['y_score'] = y_score
for metric in metrics:
if metric == 'roc_auc':
scores[metric] = roc_auc_score(
y_test, y_score, sample_weight=test_sample_weights)
scores['fpr'], scores['tpr'], _ = roc_curve(
y_test, y_score, pos_label=1,
sample_weight=test_sample_weights)
elif metric == 'balanced_accuracy':
y_pred = pipe.predict(X_test, **pipe_predict_params)
scores['y_pred'] = y_pred
scores[metric] = balanced_accuracy_score(
y_test, y_pred, sample_weight=test_sample_weights)
elif metric == 'average_precision':
scores[metric] = average_precision_score(
y_test, y_score, sample_weight=test_sample_weights)
scores['pre'], scores['rec'], _ = precision_recall_curve(
y_test, y_score, pos_label=1,
sample_weight=test_sample_weights)
scores['pr_auc'] = auc(scores['rec'], scores['pre'])
return scores
def fit_models(pipe, X, y, groups, sample_weights, test_splits, test_repeats):
if groups is None:
cv = RepeatedStratifiedKFold(n_splits=test_splits,
n_repeats=test_repeats,
random_state=random_seed)
else:
cv = RepeatedStratifiedGroupKFold(n_splits=test_splits,
n_repeats=test_repeats,
random_state=random_seed)
split_results = []
for train_idxs, test_idxs in cv.split(X, y, groups):
train_sample_weights = None
test_sample_weights = None
if sample_weights is not None:
train_sample_weights = sample_weights[train_idxs]
test_sample_weights = sample_weights[test_idxs]
pipe.fit(X.iloc[train_idxs], y[train_idxs],
clf1__sample_weight=train_sample_weights)
split_scores = {'te': calculate_test_scores(
pipe, X.iloc[test_idxs], y[test_idxs], pipe_predict_params={},
test_sample_weights=test_sample_weights)}
split_results.append({'scores': split_scores})
return split_results
parser = ArgumentParser()
parser.add_argument('--data-dir', type=str, default='data', help='data dir')
parser.add_argument('--results-dir', type=str, default='results/models',
help='results dir')
parser.add_argument('--test-splits', type=int, help='num test splits')
parser.add_argument('--test-repeats', type=int, help='num test repeats')
parser.add_argument('--n-jobs', type=int, default=-1, help='num parallel jobs')
parser.add_argument('--parallel-backend', type=str, default='loky',
help='joblib parallel backend')
parser.add_argument('--verbose', type=int, default=1, help='verbosity')
args = parser.parse_args()
random_seed = 777
if args.parallel_backend == 'multiprocessing':
warnings.filterwarnings(
'ignore', category=ConvergenceWarning,
message=('^The max_iter was reached which means the coef_ did not '
'converge'),
module='sklearn.linear_model._sag')
else:
python_warnings = ([os.environ['PYTHONWARNINGS']]
if 'PYTHONWARNINGS' in os.environ else [])
python_warnings.append(':'.join(
['ignore', ('The max_iter was reached which means the coef_ did not '
'converge'), 'UserWarning', 'sklearn.linear_model._sag']))
os.environ['PYTHONWARNINGS'] = ','.join(python_warnings)
out_dir = '{}/resp'.format(args.results_dir)
os.makedirs(out_dir, mode=0o755, exist_ok=True)
r_base = importr('base')
r_biobase = importr('Biobase')
metrics = ['roc_auc', 'average_precision', 'balanced_accuracy']
ordinal_encoder_categories = {
'tumor_stage': ['0', 'i', 'i or ii', 'ii', 'NA', 'iii', 'iv']}
pipes = [
Pipeline([('trf0', StandardScaler()),
('clf1', SVC(kernel='linear', class_weight='balanced',
random_state=random_seed))]),
Pipeline([('trf0', StandardScaler()),
('clf1', LogisticRegression(
penalty='l2', solver='saga', max_iter=5000,
class_weight='balanced', random_state=random_seed))])]
datasets = []
eset_files = sorted(glob('{}/tcga_*_resp_*_eset.rds'.format(args.data_dir)))
num_esets = len(eset_files)
for eset_idx, eset_file in enumerate(eset_files):
file_basename = os.path.splitext(os.path.split(eset_file)[1])[0]
_, cancer, _, target, _, *rest = file_basename.split('_')
cancer_target = '_'.join([cancer, target])
if args.test_splits is None:
test_splits = 3 if cancer_target == 'stad_oxaliplatin' else 4
else:
test_splits = args.test_splits
if args.test_repeats is None:
test_repeats = 33 if cancer_target == 'stad_oxaliplatin' else 25
else:
test_repeats = args.test_repeats
if args.verbose < 2:
print('Loading {:d}/{:d} esets'.format(eset_idx + 1, num_esets),
end='\r', flush=True)
else:
print('Loading {}'.format(file_basename))
eset = r_base.readRDS(eset_file)
sample_meta = r_biobase.pData(eset)
X = pd.DataFrame(index=sample_meta.index)
y = np.array(sample_meta['Class'], dtype=int)
if 'Group' in sample_meta.columns:
groups = np.array(sample_meta['Group'], dtype=int)
_, group_indices, group_counts = np.unique(
groups, return_inverse=True, return_counts=True)
sample_weights = (np.max(group_counts) / group_counts)[group_indices]
else:
groups = None
sample_weights = None
X['age_at_diagnosis'] = sample_meta[['age_at_diagnosis']]
if sample_meta['gender'].unique().size > 1:
ohe = OneHotEncoder(drop='first', sparse=False)
ohe.fit(sample_meta[['gender']])
feature_name = 'gender_{}'.format(ohe.categories_[0][1])
X[feature_name] = ohe.transform(sample_meta[['gender']])
if sample_meta['tumor_stage'].unique().size > 1:
ode = OrdinalEncoder(categories=[
ordinal_encoder_categories['tumor_stage']])
ode.fit(sample_meta[['tumor_stage']])
X['tumor_stage'] = ode.transform(sample_meta[['tumor_stage']])
datasets.append((X, y, groups, sample_weights, test_splits, test_repeats))
if args.verbose < 2:
print(flush=True)
print('Running drug response clinical models', flush=True)
all_results = Parallel(n_jobs=args.n_jobs, backend=args.parallel_backend,
verbose=args.verbose)(
delayed(fit_models)(pipe, X, y, groups, sample_weights, test_splits,
test_repeats)
for pipe, (X, y, groups, sample_weights, test_splits, test_repeats) in (
product(pipes, datasets)))
if args.verbose < 1:
print(flush=True)
mean_scores = []
for (pipe, eset_file), split_results in zip(product(pipes, eset_files),
all_results):
file_basename = os.path.splitext(os.path.split(eset_file)[1])[0]
_, cancer, analysis, target, data_type, *rest = file_basename.split('_')
roc_scores, pr_scores = [], []
for split_result in split_results:
roc_scores.append(split_result['scores']['te']['roc_auc'])
pr_scores.append(split_result['scores']['te']['pr_auc'])
dataset_name = '_'.join(file_basename.split('_')[:-1])
model_code = 'svm' if isinstance(pipe[-1], SVC) else 'lgr'
model_name = '_'.join([dataset_name, model_code, 'clinical'])
mean_score = np.nanmean(roc_scores)
mean_scores.append([analysis, cancer, target, data_type, model_code,
mean_score])
results_dir = '{}/{}'.format(out_dir, model_name)
os.makedirs(results_dir, mode=0o755, exist_ok=True)
dump(split_results, '{}/{}_split_results.pkl'
.format(results_dir, model_name))
mean_scores_df = pd.DataFrame(mean_scores, columns=[
'Analysis', 'Cancer', 'Target', 'Data Type', 'Model Code', 'Mean Score'])
mean_scores_df.to_csv('{}/resp_clinical_model_mean_scores.tsv'
.format(out_dir), index=False, sep='\t')
if args.verbose > 0:
print(tabulate(mean_scores_df.sort_values(
['Analysis', 'Cancer', 'Target', 'Data Type', 'Model Code']),
floatfmt='.4f', showindex=False, headers='keys'))