-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrun_surv_clinical_models.py
183 lines (150 loc) · 6.83 KB
/
run_surv_clinical_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import warnings
from argparse import ArgumentParser
from glob import glob
warnings.filterwarnings('ignore', category=FutureWarning,
module='rpy2.robjects.pandas2ri')
import numpy as np
import pandas as pd
import rpy2.rinterface_lib.embedded as r_embedded
r_embedded.set_initoptions(
('rpy2', '--quiet', '--no-save', '--max-ppsize=500000'))
import rpy2.robjects as robjects
from joblib import delayed, dump, Parallel
from rpy2.robjects import numpy2ri, pandas2ri
from rpy2.robjects.packages import importr
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, StandardScaler
from sksurv.linear_model import CoxPHSurvivalAnalysis
from sksurv.util import Surv
from tabulate import tabulate
from sksurv_extensions.model_selection import (
SurvivalStratifiedShuffleSplit,
SurvivalStratifiedSampleFromGroupShuffleSplit)
numpy2ri.activate()
pandas2ri.activate()
def fit_models(X, y, groups, group_weights, test_splits, test_size):
pipe = Pipeline([('trf0', StandardScaler()),
('srv1', CoxPHSurvivalAnalysis(alpha=1e-09, n_iter=10000,
ties='efron', tol=1e-09))])
if groups is None:
cv = SurvivalStratifiedShuffleSplit(
n_splits=test_splits, test_size=test_size,
random_state=random_seed)
cv_split_params = {}
else:
cv = SurvivalStratifiedSampleFromGroupShuffleSplit(
n_splits=test_splits, test_size=test_size,
random_state=random_seed)
cv_split_params = {'weights': group_weights}
split_models, split_results = [], []
for train_idxs, test_idxs in cv.split(X, y, groups, **cv_split_params):
try:
pipe.fit(X.iloc[train_idxs], y[train_idxs])
score = pipe.score(X.iloc[test_idxs], y[test_idxs])
y_pred = pipe.predict(X.iloc[test_idxs])
surv_funcs = pipe.predict_survival_function(X.iloc[test_idxs])
except Exception:
split_models.append(None)
split_results.append(None)
else:
split_models.append(pipe)
split_scores = {'te': {'score': score, 'y_pred': y_pred}}
split_results.append({'scores': split_scores,
'surv_funcs': surv_funcs})
return split_models, split_results
parser = ArgumentParser()
parser.add_argument('--data-dir', type=str, default='data', help='data dir')
parser.add_argument('--results-dir', type=str, default='results/models',
help='results dir')
parser.add_argument('--test-splits', type=int, help='num test splits')
parser.add_argument('--test-size', type=float, help='test split size')
parser.add_argument('--n-jobs', type=int, default=-1, help='num parallel jobs')
parser.add_argument('--verbose', type=int, default=1, help='verbosity')
args = parser.parse_args()
test_splits = 100 if args.test_splits is None else args.test_splits
test_size = 0.25 if args.test_size is None else args.test_size
random_seed = 777
out_dir = '{}/surv'.format(args.results_dir)
os.makedirs(out_dir, mode=0o755, exist_ok=True)
ordinal_encoder_categories = {
'tumor_stage': ['0', 'i', 'i or ii', 'ii', 'NA', 'iii', 'iv']}
r_base = importr('base')
r_biobase = importr('Biobase')
datasets = []
eset_files = sorted(glob('{}/tcga_*_surv_*_eset.rds'.format(args.data_dir)))
num_esets = len(eset_files)
for eset_idx, eset_file in enumerate(eset_files):
file_basename = os.path.splitext(os.path.split(eset_file)[1])[0]
if args.verbose < 2:
print('Loading {:d}/{:d} esets'.format(eset_idx + 1, num_esets),
end='\r', flush=True)
else:
print('Loading {}'.format(file_basename))
eset = r_base.readRDS(eset_file)
sample_meta = r_biobase.pData(eset)
X = pd.DataFrame(index=sample_meta.index)
y = Surv.from_dataframe('Status', 'Survival_in_days', sample_meta)
if 'Group' in sample_meta.columns:
groups = np.array(sample_meta['Group'], dtype=int)
if ('GroupWeight' in sample_meta.columns
and sample_meta['GroupWeight'].unique().size > 1):
group_weights = np.array(sample_meta['GroupWeight'], dtype=float)
else:
group_weights = None
else:
groups = None
group_weights = None
X['age_at_diagnosis'] = sample_meta[['age_at_diagnosis']]
if sample_meta['gender'].unique().size > 1:
ohe = OneHotEncoder(drop='first', sparse=False)
ohe.fit(sample_meta[['gender']])
feature_name = 'gender_{}'.format(ohe.categories_[0][1])
X[feature_name] = ohe.transform(sample_meta[['gender']])
if sample_meta['tumor_stage'].unique().size > 1:
ode = OrdinalEncoder(categories=[
ordinal_encoder_categories['tumor_stage']])
ode.fit(sample_meta[['tumor_stage']])
X['tumor_stage'] = ode.transform(sample_meta[['tumor_stage']])
datasets.append((X, y, groups, group_weights))
if args.verbose < 2:
print(flush=True)
print('Running survival clinical models', flush=True)
all_models, all_results = zip(*Parallel(
n_jobs=args.n_jobs, verbose=args.verbose)(
delayed(fit_models)(X, y, groups, group_weights, test_splits,
test_size)
for X, y, groups, group_weights in datasets))
if args.verbose < 1:
print(flush=True)
mean_scores = []
for eset_file, split_models, split_results in zip(eset_files, all_models,
all_results):
file_basename = os.path.splitext(os.path.split(eset_file)[1])[0]
_, cancer, analysis, target, data_type, *rest = file_basename.split('_')
scores = []
for split_result in split_results:
if split_result is not None:
scores.append(split_result['scores']['te']['score'])
else:
scores.append(np.nan)
dataset_name = '_'.join(file_basename.split('_')[:-1])
model_code = 'cox'
model_name = '_'.join([dataset_name, model_code, 'clinical'])
mean_score = np.nanmean(scores)
mean_scores.append([analysis, cancer, target, data_type, model_code,
mean_score])
results_dir = '{}/{}'.format(out_dir, model_name)
os.makedirs(results_dir, mode=0o755, exist_ok=True)
dump(split_models, '{}/{}_split_models.pkl'
.format(results_dir, model_name))
dump(split_results, '{}/{}_split_results.pkl'
.format(results_dir, model_name))
mean_scores_df = pd.DataFrame(mean_scores, columns=[
'Analysis', 'Cancer', 'Target', 'Data Type', 'Model Code', 'Mean Score'])
mean_scores_df.to_csv('{}/surv_clinical_model_mean_scores.tsv'
.format(out_dir), index=False, sep='\t')
if args.verbose > 0:
print(tabulate(mean_scores_df.sort_values(
['Analysis', 'Cancer', 'Target', 'Data Type', 'Model Code']),
floatfmt='.4f', showindex=False, headers='keys'))