-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
72 lines (56 loc) · 3.07 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import torch
import argparse
import datetime
from solver import Solver
from utils import print_args
def main(args):
# Create required directories if they don't exist
os.makedirs(args.model_path, exist_ok=True)
os.makedirs(args.output_path, exist_ok=True)
solver = Solver(args)
solver.train() # Training function
solver.plot_graphs() # Training plots
solver.test(train=True) # Testing function
# Update arguments
def update_args(args):
args.model_path = os.path.join(args.model_path, args.dataset)
args.output_path = os.path.join(args.output_path, args.dataset)
args.n_patches = (args.image_size // args.patch_size) ** 2
args.is_cuda = torch.cuda.is_available() # Check GPU availability
if args.is_cuda:
print("Using GPU")
else:
print("Cuda not available.")
return args
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='2D Positional Embeddings for Vision Transformer')
# Positional Embedding
parser.add_argument('--pos_embed', type=str, default='learn', help='Type of Positional Embedding to Use in ViT', choices=['none', 'learn', 'sinusoidal', 'relative', 'rope'])
parser.add_argument('--max_relative_distance', type=int, default=2, help='max relative distance used only in relative type positional embedding (referred to as k in paper)')
# Training Arguments
parser.add_argument('--epochs', type=int, default=200, help='number of training epochs')
parser.add_argument('--warmup_epochs', type=int, default=10, help='number of epochs to warmup learning rate')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--n_classes', type=int, default=10, help='number of classes in the dataset')
parser.add_argument('--n_workers', type=int, default=4, help='number of workers for data loaders')
parser.add_argument('--lr', type=float, default=5e-4, help='peak learning rate')
parser.add_argument('--output_path', type=str, default='./outputs', help='path to store training graphs and tsne plots')
# Data arguments
parser.add_argument('--dataset', type=str, default='cifar10', help='dataset to use')
parser.add_argument("--image_size", type=int, default=32, help='image size')
parser.add_argument("--patch_size", type=int, default=4, help='patch Size')
parser.add_argument('--data_path', type=str, default='./data/', help='path to store downloaded dataset')
# Model Arguments
parser.add_argument('--model_path', type=str, default='./model', help='path to store trained model')
parser.add_argument("--load_model", type=bool, default=False, help="load saved model")
start_time = datetime.datetime.now()
print("Started at " + str(start_time.strftime('%Y-%m-%d %H:%M:%S')))
args = parser.parse_args()
args = update_args(args)
print_args(args)
main(args)
end_time = datetime.datetime.now()
duration = end_time - start_time
print("Ended at " + str(end_time.strftime('%Y-%m-%d %H:%M:%S')))
print("Duration: " + str(duration))