-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpredict.py
73 lines (49 loc) · 1.76 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import argparse
import os
import numpy as np
import tensorflow as tf
from matplotlib import pyplot as plt
from PIL import Image
import models
def predict(model_data_path, image_path):
# Default input size
height = 228
width = 304
channels = 3
batch_size = 1
# Read image
img = Image.open(image_path)
img = img.resize([width,height], Image.ANTIALIAS)
img = np.array(img).astype('float32')
img = np.expand_dims(np.asarray(img), axis = 0)
# Create a placeholder for the input image
input_node = tf.placeholder(tf.float32, shape=(None, height, width, channels))
# Construct the network
net = models.ResNet50UpProj({'data': input_node}, batch_size, 1, False)
with tf.Session() as sess:
# Load the converted parameters
print('Loading the model')
# Use to load from ckpt file
saver = tf.train.Saver()
saver.restore(sess, model_data_path)
# Use to load from npy file
#net.load(model_data_path, sess)
# Evalute the network for the given image
pred = sess.run(net.get_output(), feed_dict={input_node: img})
# Plot result
fig = plt.figure()
ii = plt.imshow(pred[0,:,:,0], interpolation='nearest')
fig.colorbar(ii)
plt.show()
return pred
def main():
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument('model_path', help='Converted parameters for the model')
parser.add_argument('image_paths', help='Directory of images to predict')
args = parser.parse_args()
# Predict the image
pred = predict(args.model_path, args.image_paths)
os._exit(0)
if __name__ == '__main__':
main()