-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathace_vis_util.py
678 lines (531 loc) · 23.7 KB
/
ace_vis_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
# Copyright © Niantic, Inc. 2022.
import os
import logging
import numpy as np
import trimesh
import pyrender
from PIL import Image, ImageOps
from scipy.linalg import svd
from matplotlib.colors import LinearSegmentedColormap
import torch
from torch.cuda.amp import autocast
from skimage import io, color
from skimage.transform import resize
from ace_util import get_pixel_grid, to_homogeneous
from bisect import insort
logging.getLogger('trimesh').setLevel(level=logging.WARNING)
_logger = logging.getLogger(__name__)
THICKNESS = 0.005 # controls how thick the frustum's 'bars' are
# define camera frustum geometry
origin_frustum_verts = np.array([
(0., 0., 0.),
(0.375, -0.375, -1.0),
(0.375, 0.375, -1.0),
(-0.375, 0.375, -1.0),
(-0.375, -0.375, -1.0),
])
frustum_edges = np.array([
(1, 2),
(1, 3),
(1, 4),
(1, 5),
(2, 3),
(3, 4),
(4, 5),
(5, 2),
]) - 1
def normalise_vector(vect):
"""
Returns vector with unit length.
@param vect: Vector to be normalised.
@return: Normalised vector.
"""
length = np.sqrt((vect ** 2).sum())
return vect / length
def cuboid_from_line(line_start, line_end, color=(255, 0, 255)):
"""Approximates a line with a long cuboid
color is a 3-element RGB tuple, with each element a uint8 value
"""
# create two vectors which are both (a) perpendicular to the direction of the line and
# (b) perpendicular to each other.
direction = normalise_vector(line_end - line_start)
random_dir = normalise_vector(np.random.rand(3))
perpendicular_x = normalise_vector(np.cross(direction, random_dir))
perpendicular_y = normalise_vector(np.cross(direction, perpendicular_x))
vertices = []
for node in (line_start, line_end):
for x_offset in (-1, 1):
for y_offset in (-1, 1):
vert = node + THICKNESS * (perpendicular_y * y_offset + perpendicular_x * x_offset)
vertices.append(vert)
faces = [
(4, 5, 1, 0),
(5, 7, 3, 1),
(7, 6, 2, 3),
(6, 4, 0, 2),
(0, 1, 3, 2), # end of tube
(6, 7, 5, 4), # other end of tube
]
mesh = trimesh.Trimesh(vertices=np.array(vertices), faces=np.array(faces))
for c in (0, 1, 2):
mesh.visual.vertex_colors[:, c] = color[c]
return mesh
def get_image_box(
image_path,
frustum_pose,
cam_marker_size=1.0,
flip=False
):
""" Gets a textured mesh of an image.
@param image_path: File path of the image to be rendered.
@param frustum_pose: 4x4 camera pose, OpenGL convention
@param cam_marker_size: Scaling factor for the image object
@param flip: flag whether to flip the image left/right
@return: duple, trimesh mesh of the image and aspect ratio of the image
"""
pil_image = Image.open(image_path)
pil_image = ImageOps.flip(pil_image) # flip top/bottom to align with scene space
pil_image_w, pil_image_h = pil_image.size
aspect_ratio = pil_image_w / pil_image_h
height = 0.75
width = height * aspect_ratio
width *= cam_marker_size
height *= cam_marker_size
if flip:
pil_image = ImageOps.mirror(pil_image) # flips left/right
width = -width
vertices = np.zeros((4, 3))
vertices[0, :] = [width / 2, height / 2, -cam_marker_size]
vertices[1, :] = [width / 2, -height / 2, -cam_marker_size]
vertices[2, :] = [-width / 2, -height / 2, -cam_marker_size]
vertices[3, :] = [-width / 2, height / 2, -cam_marker_size]
faces = np.zeros((2, 3))
faces[0, :] = [0, 1, 2]
faces[1, :] = [2, 3, 0]
# faces[2,:] = [2,3]
# faces[3,:] = [3,0]
uvs = np.zeros((4, 2))
uvs[0, :] = [1.0, 0]
uvs[1, :] = [1.0, 1.0]
uvs[2, :] = [0, 1.0]
uvs[3, :] = [0, 0]
face_normals = np.zeros((2, 3))
face_normals[0, :] = [0.0, 0.0, 1.0]
face_normals[1, :] = [0.0, 0.0, 1.0]
material = trimesh.visual.texture.SimpleMaterial(
image=pil_image,
ambient=(1.0, 1.0, 1.0, 1.0),
diffuse=(1.0, 1.0, 1.0, 1.0),
)
texture = trimesh.visual.TextureVisuals(
uv=uvs,
image=pil_image,
material=material,
)
mesh = trimesh.Trimesh(
vertices=vertices,
faces=faces,
face_normals=face_normals,
visual=texture,
validate=True,
process=False
)
# from simple recon code
def transform_trimesh(mesh, transform):
""" Applies a transform to a trimesh. """
np_vertices = np.array(mesh.vertices)
np_vertices = (transform @ np.concatenate([np_vertices, np.ones((np_vertices.shape[0], 1))], 1).T).T
np_vertices = np_vertices / np_vertices[:, 3][:, None]
mesh.vertices[:, 0] = np_vertices[:, 0]
mesh.vertices[:, 1] = np_vertices[:, 1]
mesh.vertices[:, 2] = np_vertices[:, 2]
return mesh
return transform_trimesh(mesh, frustum_pose), aspect_ratio
def generate_frustum_at_position(rotation, translation, color, size, aspect_ratio):
"""Generates a frustum mesh at a specified (rotation, translation), with optional color
: rotation is a 3x3 numpy array
: translation is a 3-long numpy vector
: color is a 3-long numpy vector or tuple or list; each element is a uint8 RGB value
: aspect_ratio is a float of width/height
"""
# assert translation.shape == (3,)
# assert rotation.shape == (3, 3)
# assert len(color) == 3
frustum_verts = origin_frustum_verts.copy()
frustum_verts[:,0] *= aspect_ratio
transformed_frustum_verts = \
size * rotation.dot(frustum_verts.T).T + translation[None, :]
cuboids = []
for edge in frustum_edges:
line_cuboid = cuboid_from_line(line_start=transformed_frustum_verts[edge[0]],
line_end=transformed_frustum_verts[edge[1]],
color=color)
cuboids.append(line_cuboid)
return trimesh.util.concatenate(cuboids)
class LazyCamera:
"""Smooth and slightly delayed scene camera.
Implements a rolling average of last few camera positions.
Also zooms out to display the whole scene.
"""
def __init__(self,
camera_buffer_size=20,
backwards_offset=4,
camera_buffer=None):
"""Constructor.
Parameters:
camera_buffer_size: Number of last few cameras to consider
backwards_offset: Move observing camera backwards from current view, in meters
camera_buffer: Optional array of camera positions to pre-fill the buffer
"""
# buffer holding last m camera positions
if camera_buffer is None:
self.m_camera_buffer = []
else:
self.m_camera_buffer = camera_buffer
self.m_camera_buffer_size = camera_buffer_size
self.m_backwards_offset = backwards_offset
def _orthonormalize_rotation(self, T):
"""Takes a 4x4 matrix and orthonormalizes the upper left 3x3 using SVD
Returns:
T with orthonormalized upper 3x3
"""
R = T[:3, :3]
t = T[:3, 3]
# see https://arxiv.org/pdf/2006.14616.pdf Eq.2
U, S, Vt = svd(R)
Z = np.eye(3)
Z[-1, -1] = np.sign(np.linalg.det(U @ Vt))
R = U @ Z @ Vt
T = np.eye(4) # recreate the matrix to make sure that the forth row is [0 0 0 1]
T[:3, :3] = R
T[:3, 3] = t
return T
def update_camera(self, view):
"""Update lazy camera with new view.
Parameters:
view: New camera view, 4x4 matrix
"""
observing_camera = view.copy()
# push observing camera back in z-direction in camera space
z_vec = np.zeros((3,))
z_vec[2] = 1
offset_vector = view[:3, :3] @ z_vec
observing_camera[:3, 3] += offset_vector * self.m_backwards_offset
# use moving avage of last X cameras (so that observing camera is smooth and follows with slight delay)
self.m_camera_buffer.append(observing_camera)
if len(self.m_camera_buffer) > self.m_camera_buffer_size:
self.m_camera_buffer = self.m_camera_buffer[1:]
def get_current_view(self):
"""Get current lazy camera view for rendering.
Returns:
4x4 matrix
"""
# naive average of camera pose matrices
smooth_camera_pose = np.zeros((4, 4))
for camera_pose in self.m_camera_buffer:
smooth_camera_pose += camera_pose
smooth_camera_pose /= len(self.m_camera_buffer)
return self._orthonormalize_rotation(smooth_camera_pose)
def get_camera_buffer(self):
"""
Return buffered camera views, e.g. for storing state.
"""
return self.m_camera_buffer
class PointCloudBuffer:
"""Holds last N point clouds."""
def __init__(self, pc_buffer_size=5):
"""Constructor.
Parameters:
pc_buffer_size: Number of last N point clouds to hold
"""
self.pc_buffer_size = pc_buffer_size
self.pc_xyz_buffer = []
self.pc_clr_buffer = []
self.pc_err_buffer = []
def update_buffer(self, pc_xyz, pc_clr, pc_errs=None):
"""
Add a new (partial) point cloud to the buffer.
@param pc_xyz: N3, coordinates of points
@param pc_clr: N3, RGB colors of points
@param pc_errs: N1, scalar errors of points
"""
self.pc_xyz_buffer.append(pc_xyz)
self.pc_clr_buffer.append(pc_clr)
if pc_errs is not None:
self.pc_err_buffer.append(pc_errs)
# remove oldest xyz and clr entries in the buffer if buffer is full
if 0 < self.pc_buffer_size < len(self.pc_xyz_buffer):
self.pc_xyz_buffer = self.pc_xyz_buffer[1:]
self.pc_clr_buffer = self.pc_clr_buffer[1:]
# errs handled separately, because optional
if 0 < self.pc_buffer_size < len(self.pc_err_buffer):
self.pc_err_buffer = self.pc_err_buffer[1:]
def get_point_cloud(self):
"""
Merges and returns all point clouds in the buffer.
@return: triple, N3 xyz + N3 colors + N1 errors
"""
# combine PC chunks of current frame to single PC
merged_xyz = np.concatenate(self.pc_xyz_buffer)
merged_clr = np.concatenate(self.pc_clr_buffer)
if len(self.pc_err_buffer) > 0:
merged_errs = np.concatenate(self.pc_err_buffer)
else:
merged_errs = None
return merged_xyz, merged_clr, merged_errs
def disable_buffer_cap(self):
"""
Switch rolling buffer of fixed size to unconstrained buffer.
"""
self.pc_buffer_size = -1
def get_retro_colors():
"""
Create custom color map, dark magenta to bright cyan.
if you like this color map and use it in your own work, let me know
https://twitter.com/eric_brachmann
looking forward to seeing what you do with it :)
-- Eric
@return: Color lookup table, 256x3
"""
cdict = {'red': [
[0.0, 0.073, 0.073],
[0.4, 0.325, 0.325],
[0.7, 0.286, 0.286],
[0.85, 0.266, 0.266],
[0.95, 0, 0],
[1, 1, 1],
],
'green': [
[0.0, 0.0, 0.0],
[0.4, 0.058, 0.058],
[0.7, 0.470, 0.470],
[0.85, 0.827, 0.827],
[0.95, 1, 1],
[1, 1, 1],
],
'blue': [
[0.0, 0.057, 0.057],
[0.4, 0.223, 0.223],
[0.7, 0.752, 0.752],
[0.85, 0.988, 0.988],
[0.95, 1, 1],
[1, 1, 1],
]}
retroColorMap = LinearSegmentedColormap('retroColors', segmentdata=cdict, N=256)
return retroColorMap(np.linspace(0, 1, 257))[1:, :3]
def get_point_cloud_from_network(network, data_loader, filter_depth):
"""
Extract a point cloud from a fully trained network.
@param network: scene coordinate regression network
@param data_loader: loader for the mapping sequence
@param filter_depth: in meters, remove points further from the camera
@return: tuple, N3 coordinates + N3 RGB colors
"""
# remove points that do not accurately reproject (but still guarantee min number of points)
filter_repro_error = 1 # in px
pixel_grid = get_pixel_grid(network.OUTPUT_SUBSAMPLE) # Shape: 2x5000x5000
max_pc_points = 500000
avg_pc_points = int(max_pc_points / len(data_loader))
pc_xyz = []
pc_clr = []
with torch.no_grad():
# iterate over mapping sequence
for image, _, _, gt_inv_pose, K, _, _, file, _, _ in data_loader:
# predict scene coordinate
image = image.cuda(non_blocking=True)
gt_inv_pose = gt_inv_pose.cuda(non_blocking=True)
K = K.cuda(non_blocking=True)
with autocast():
scene_coords = network(image)
B, C, H, W = scene_coords.shape
# scene coordinate to camera coordinates
pred_scene_coords_B3HW = scene_coords.float()
pred_scene_coords_B4N = to_homogeneous(pred_scene_coords_B3HW.flatten(2))
pred_cam_coords_B3N = torch.matmul(gt_inv_pose[:, :3], pred_scene_coords_B4N)
# project scene coordinates
pred_px_B3N = torch.matmul(K, pred_cam_coords_B3N)
pred_px_B3N[:, 2].clamp_(min=0.1) # avoid division by zero
pred_px_B2N = pred_px_B3N[:, :2] / pred_px_B3N[:, 2, None]
# measure reprojection error
pixel_positions_2HW = pixel_grid[:, :H, :W].clone() # Crop to actual size
pixel_positions_2N = pixel_positions_2HW.view(2, -1)
reprojection_error_2N = pred_px_B2N.squeeze() - pixel_positions_2N.cuda()
reprojection_error_1N = torch.norm(reprojection_error_2N, dim=0, keepdim=True, p=1)
# filter predictions based on depth and reprojection error
sc_depth_mask = pred_cam_coords_B3N[0, 2] < filter_depth
sc_err_mask = reprojection_error_1N.squeeze() < filter_repro_error
# see whether reprojection error filter has enough points survive
if sc_err_mask.sum() < avg_pc_points:
# take minimun number of points with lowest reprojection error
sorted_errors, _ = torch.sort(reprojection_error_1N.squeeze())
relaxed_filter_repro_error = sorted_errors[min(avg_pc_points, sorted_errors.shape[0]-1)]
sc_err_mask = reprojection_error_1N.squeeze() < relaxed_filter_repro_error
sc_vis_mask = torch.logical_and(sc_depth_mask, sc_err_mask)
# load image file to extract colors
rgb = io.imread(file[0])
if len(rgb.shape) < 3:
rgb = color.gray2rgb(rgb)
# align RGB values with scene coordinate prediction
rgb = rgb.astype('float64')
# firstly, resize image to network input resolution
rgb = resize(rgb, image.shape[2:])
# secondly, sub-sampling to network output resolution
# using nearest neighbour subsampling results in slightly crisper colors
nn_stride = network.OUTPUT_SUBSAMPLE
nn_offset = network.OUTPUT_SUBSAMPLE//2
rgb = rgb[nn_offset::nn_stride, nn_offset::nn_stride, :]
# make sure the resolution fits (catch any striding mismatches)
rgb = resize(rgb, scene_coords.shape[2:])
rgb = torch.from_numpy(rgb).permute(2, 0, 1)
rgb = rgb.contiguous().view(3, -1)
# remove invalid map points
rgb = rgb[:, sc_vis_mask.cpu()]
xyz = pred_scene_coords_B4N[0, :3, sc_vis_mask].cpu()
# sub-sample if necessary
if xyz.shape[1] > avg_pc_points:
stride = int(xyz.shape[1] / avg_pc_points)
xyz = xyz[:, ::stride]
rgb = rgb[:, ::stride]
pc_xyz.append(xyz.numpy())
pc_clr.append(rgb.numpy())
# merge points
pc_xyz = np.concatenate(pc_xyz, axis=1)
pc_clr = np.concatenate(pc_clr, axis=1)
# 3N to N3
pc_xyz = np.transpose(pc_xyz)
pc_clr = np.transpose(pc_clr)
# OpenCV to OpenGL convention
pc_xyz[:, 1] = -pc_xyz[:, 1]
pc_xyz[:, 2] = -pc_xyz[:, 2]
# return merged frame points
return pc_xyz, pc_clr
def get_rendering_target_path(target_base_path, map_file_name):
"""
Infer a folder for renderings from a base path and a map name.
Creates target folder if it does not exist.
@param target_base_path: Base path for all renderings.
@param map_file_name: Map file name to infer folder name for renderings of this mapping run.
@return: path to store renderings
"""
target_path = map_file_name # infer rendering folder from map file name
target_path = os.path.basename(target_path) # extract file name
target_path = os.path.splitext(target_path)[0] # remove extension
target_path = target_base_path / target_path
os.makedirs(target_path, exist_ok=True)
return target_path
class CameraTrajectoryBuffer:
"""Incrementally builds a camera trajectory mesh."""
def __init__(self,
frustum_skip,
frustum_scale):
"""
Constructor.
Initialises standard values.
@param frustum_skip: minimum distance between placing frustums, in meters
@param frustum_scale: Scaling factor for camera frustums
"""
self.frustum_skip = frustum_skip
self.frustum_scale = frustum_scale
self.trajectory = [] # holds line segments to render the camera path of the mapping sequence
self.frustums = [] # holds frustum geometry for the trajectory
self.frustum_images = [] # frustum images need to be kept extra due to image texture
self.trajectory_previous = None # holds last camera position to skip segments if camera jumps
self.frustum_positions = [] # holds accepted frustum placement positions to sparsify them
self.trajectory_distances = [] # holds all previous distances in the trajectory to detect jumps
self.trajectory_color = (255, 255, 255)
self.aspect_ratio_buffer = 4 / 3 # default aspect ratio, overwritten as soon as a acutal image is loaded
def grow_camera_path(self, new_camera):
"""
Expand the camera trajectory line wrt new camera.
Keeps track of camera movement statistics and skips the line if a camera jump is detected.
@param new_camera: 4x4 camera pose, OpenGL convention
"""
# get position of mapping camera
current_pos = new_camera[:3, 3]
# draw line from previous position to current position
if self.trajectory_previous is not None:
current_dist = np.linalg.norm(current_pos - self.trajectory_previous)
# keep sorted list of previous camera distance
insort(self.trajectory_distances, current_dist)
# detect jump if current dist is more than X times the median
line_skip = 10 * self.trajectory_distances[len(self.trajectory_distances) // 2]
if 0.0001 < current_dist < line_skip:
line_cuboid = cuboid_from_line(line_start=self.trajectory_previous,
line_end=current_pos,
color=self.trajectory_color)
self.trajectory.append(line_cuboid)
else:
if current_dist > line_skip:
_logger.info(f"Detected jump: camera dist={current_dist:.3f}, threshold={line_skip:.3f}, "
f"threshold estimated from {len(self.trajectory_distances)} estimates.")
# update previous position for next iteration
self.trajectory_previous = current_pos
def add_position_marker(self, marker_pose, marker_color, marker_extent=0.015):
"""
Adds a cube to the trajectory mesh to signify a singular camera position.
@param marker_pose: 4x4 camera pose, OpenGL convention
@param marker_color: RGB color of the marker
@param marker_extent: size of the marker, marker is a cube of this side length
"""
current_pos_marker = trimesh.primitives.Box(
extents=(marker_extent, marker_extent, marker_extent),
transform=marker_pose)
for c in (0, 1, 2):
current_pos_marker.visual.vertex_colors[:, c] = marker_color[c]
self.trajectory.append(current_pos_marker)
def _get_closest_frustum_distance(self, new_camera):
"""
Calculate distance to the closest, previously placed frustum in the trajectory so far.
@param new_camera: 4x4 camera, OpenGL convention
@return: distance to the closest frustum in the trajectory
"""
if len(self.frustum_positions) == 0:
return self.frustum_skip + 1 #hack, return a distance that always accepts the new camera
else:
distances = [np.linalg.norm(pos - new_camera[:3, 3]) for pos in self.frustum_positions]
return min(distances)
def add_camera_frustum(self, camera, image_file=None, sparse=True, frustum_color=None):
"""
Add a camera frustum object to the trajectory, minding distance to existing frustums.
@param camera: 4x4 camera pose, OpenGL convention
@param image_file: path to image to be displayed in frustum
@param sparse: flag, if true a frustum is not placed if too close to existing frustums
@param frustum_color: RGB color, if none default color is used
"""
new_camera = camera.copy()
if frustum_color is None:
frustum_color = self.trajectory_color
# place camera frustum all X centimeters (or overwrite via sparse flag)
if (sparse == False) or (self._get_closest_frustum_distance(new_camera) > self.frustum_skip):
if image_file is not None:
image_mesh, self.aspect_ratio_buffer = get_image_box(image_path=image_file,
frustum_pose=new_camera,
flip=True,
cam_marker_size=self.frustum_scale)
image_mesh = pyrender.Mesh.from_trimesh(image_mesh)
self.frustum_images.append(image_mesh)
frustum = generate_frustum_at_position(rotation=new_camera[:3, :3],
translation=new_camera[:3, 3],
color=frustum_color,
size=self.frustum_scale,
aspect_ratio=self.aspect_ratio_buffer)
self.frustums.append(frustum)
self.frustum_positions.append(new_camera[:3, 3])
def clear_frustums(self):
"""
Clear all existing frustums in the trajectory.
"""
self.frustums.clear()
self.frustum_images.clear()
self.frustum_previous = None
def get_mesh(self):
"""
Turn trajectory into pyrender mesh.
Frustum images are returned separately since merging textured and non-textured objects creates artifacts.
@return: tuple, trajectory mesh + list of frustum image objects
"""
# concatenate line segments and frustums into a single mapping trajectory mesh
trajectory_mesh = self.trajectory + self.frustums
trajectory_mesh = trimesh.util.concatenate(trajectory_mesh)
trajectory_mesh = pyrender.Mesh.from_trimesh(trajectory_mesh)
return trajectory_mesh, self.frustum_images