-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_model.py
258 lines (190 loc) · 7.58 KB
/
run_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#!/usr/bin/env python
import argparse
from time import time
import math
import torch
import torch.nn as nn
import torch.optim
import torch.utils.data
from src_model.embeddings import Embeddings
from src_model.model import primary_model
from src_model.loss import LabelSmoothingCrossEntropy
from src_preprocessor.process_text import clean_text
from src_preprocessor.text_utils import to_paragraphs
from torch.utils.data import Dataset, DataLoader
import pandas
best_acc1 = 0
DATASET_CSV = 'dataset.csv'
GLOVE_DATASET_FILE = '../glove.6B/glove.6B.100d.txt'
EMBEDDING_SIZE = 100
MAX_PARAGRAPH_LENGTH = 128
MAX_NUM_PARAGRAPHS = 128
def get_dataset(Embeddings, start=0, end=-1):
dataset = CustomDataset(DATASET_CSV, start, end, Embeddings)
return dataset
class CustomDataset(Dataset):
def __init__(self, csv_file, start, end, Embeddings):
self.start = start
self.end = end
self.dataframe = pandas.read_csv(csv_file)
self.embeddings = Embeddings
if end < 0:
self.len = len(self.dataframe) - start
else:
self.len = end - start
def __len__(self):
return self.len
def __getitem__(self, i):
i += self.start
file_id = self.dataframe.loc[i, 'file_id']
para_n = torch.tensor(self.dataframe.loc[i, 'para_n'], dtype=torch.int)
with open(f'casefiles_raw/{file_id}', 'r') as file:
text = file.read()
text = to_paragraphs(text)
if len(text) > MAX_NUM_PARAGRAPHS:
text = text[:MAX_NUM_PARAGRAPHS]
text = [clean_text(paragraph) for paragraph in text]
text = [self.embeddings.to_embeddings_paragraph(paragraph) for paragraph in text]
while len(text) < MAX_NUM_PARAGRAPHS:
text.append(torch.zeros_like(text[0]))
text = torch.stack(text)
text = text.detach()
return text, para_n
def collate_fn(batch):
text = torch.stack([item[0] for item in batch])
para_n = torch.stack([item[1] for item in batch])
return text, para_n
def init_parser():
parser = argparse.ArgumentParser(description='CIFAR quick training script')
# Data args
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--print-freq', default=10, type=int, metavar='N',
help='log frequency (by iteration)')
parser.add_argument('--checkpoint-path',
type=str,
default='checkpoint.pth',
help='path to checkpoint (default: checkpoint.pth)')
# Optimization hyperparams
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--warmup', default=5, type=int, metavar='N',
help='number of warmup epochs')
parser.add_argument('-b', '--batch-size', default=128, type=int,
metavar='N',
help='mini-batch size (default: 128)', dest='batch_size')
parser.add_argument('--lr', default=0.0005, type=float,
help='initial learning rate')
parser.add_argument('--weight-decay', default=3e-2, type=float,
help='weight decay (default: 1e-4)')
parser.add_argument('--clip-grad-norm', default=0., type=float,
help='gradient norm clipping (default: 0 (disabled))')
parser.add_argument('-p', '--positional-embedding',
type=str.lower,
choices=['learnable', 'sine', 'none'],
default='learnable', dest='positional_embedding')
parser.add_argument('--conv-layers', default=2, type=int,
help='number of convolutional layers (cct only)')
parser.add_argument('--conv-size', default=3, type=int,
help='convolution kernel size (cct only)')
parser.add_argument('--patch-size', default=4, type=int,
help='image patch size (vit and cvt only)')
parser.add_argument('--disable-cos', action='store_true',
help='disable cosine lr schedule')
parser.add_argument('--disable-aug', action='store_true',
help='disable augmentation policies for training')
parser.add_argument('--gpu-id', default=0, type=int)
parser.add_argument('--no-cuda', action='store_true',
help='disable cuda')
return parser
def main():
global best_acc1
parser = init_parser()
args = parser.parse_args()
model = primary_model()
criterion = LabelSmoothingCrossEntropy()
optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr,
weight_decay=args.weight_decay)
embeddings = Embeddings(GLOVE_DATASET_FILE)
train_dataset = get_dataset(embeddings, start=10)
val_dataset = get_dataset(embeddings, end=10)
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=1, shuffle=True, collate_fn=collate_fn,
num_workers=args.workers)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=1, shuffle=False, collate_fn=collate_fn,
num_workers=args.workers)
print("Beginning training")
time_begin = time()
for epoch in range(args.epochs):
adjust_learning_rate(optimizer, epoch, args)
cls_train(train_loader, model, criterion, optimizer, epoch, args)
acc1 = cls_validate(val_loader, model, criterion, args, epoch=epoch, time_begin=time_begin)
best_acc1 = max(acc1, best_acc1)
total_mins = (time() - time_begin) / 60
print(f'Script finished in {total_mins:.2f} minutes, '
f'best top-1: {best_acc1:.2f}, '
f'final top-1: {acc1:.2f}')
torch.save(model.state_dict(), args.checkpoint_path)
def adjust_learning_rate(optimizer, epoch, args):
lr = args.lr
if hasattr(args, 'warmup') and epoch < args.warmup:
lr = lr / (args.warmup - epoch)
elif not args.disable_cos:
lr *= 0.5 * (1. + math.cos(math.pi * (epoch - args.warmup) / (args.epochs - args.warmup)))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target):
with torch.no_grad():
batch_size = target.size(0)
_, pred = output.topk(1, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
correct_k = correct[:1].flatten().float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def cls_train(train_loader, model, criterion, optimizer, epoch, args):
model.train()
loss_val, acc1_val = 0, 0
n = 0
for i, (text, target) in enumerate(train_loader):
output = model(text)
loss = criterion(output, target)
acc1 = accuracy(output, target)
n += text.size(0)
loss_val += float(loss.item() * text.size(0))
acc1_val += float(acc1[0] * text.size(0))
optimizer.zero_grad()
loss.backward()
if args.clip_grad_norm > 0:
nn.utils.clip_grad_norm_(model.parameters(), max_norm=args.clip_grad_norm, norm_type=2)
optimizer.step()
if args.print_freq >= 0 and i % args.print_freq == 0:
avg_loss, avg_acc1 = (loss_val / n), (acc1_val / n)
print(f'[Epoch {epoch + 1}][Train][{i}] \t Loss: {avg_loss:.4e} \t Top-1 {avg_acc1:6.2f}')
def cls_validate(val_loader, model, criterion, args, epoch=None, time_begin=None):
model.eval()
loss_val, acc1_val = 0, 0
n = 0
with torch.no_grad():
for i, (images, target) in enumerate(val_loader):
if (not args.no_cuda) and torch.cuda.is_available():
images = images.cuda(args.gpu_id, non_blocking=True)
target = target.cuda(args.gpu_id, non_blocking=True)
output = model(images)
loss = criterion(output, target)
acc1 = accuracy(output, target)
n += images.size(0)
loss_val += float(loss.item() * images.size(0))
acc1_val += float(acc1[0] * images.size(0))
if args.print_freq >= 0 and i % args.print_freq == 0:
avg_loss, avg_acc1 = (loss_val / n), (acc1_val / n)
print(f'[Epoch {epoch + 1}][Eval][{i}] \t Loss: {avg_loss:.4e} \t Top-1 {avg_acc1:6.2f}')
avg_loss, avg_acc1 = (loss_val / n), (acc1_val / n)
total_mins = -1 if time_begin is None else (time() - time_begin) / 60
print(f'[Epoch {epoch + 1}] \t \t Top-1 {avg_acc1:6.2f} \t \t Time: {total_mins:.2f}')
return avg_acc1
if __name__ == '__main__':
main()