forked from allenai/pytorch-retinanet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
226 lines (163 loc) · 7.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import time
import os
import copy
import argparse
import pdb
import collections
import sys
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torchvision import datasets, models, transforms
import torchvision
from tensorboardX import SummaryWriter
import math
import model
from anchors import Anchors
import losses
from dataloader import CocoDataset, CSVDataset, collater, Resizer, AspectRatioBasedSampler, Augmenter, UnNormalizer, Normalizer
from torch.utils.data import Dataset, DataLoader
import coco_eval
import csv_eval
assert torch.__version__.split('.')[1] == '4'
print('CUDA available: {}'.format(torch.cuda.is_available()))
def main(args=None):
parser = argparse.ArgumentParser(description='Simple training script for training a RetinaNet network.')
parser.add_argument('--train-file', help='Path to file containing training annotations (see readme)')
parser.add_argument('--classes-file', help='Path to file containing class list (see readme)')
parser.add_argument('--val-file', help='Path to file containing validation annotations (optional, see readme)')
parser.add_argument('--depth', help='Resnet depth, must be one of 18, 34, 50, 101, 152', type=int, default=50)
parser.add_argument('--epochs', help='Number of epochs', type=int, default=100)
parser.add_argument('--title', type=str, default='')
parser.add_argument("--resume_model", type=str, default="")
parser.add_argument("--resume_epoch", type=int, default=0)
parser.add_argument("--reinit-classifier", action="store_true", default=False)
parser.add_argument("--lr", type=float, default=.00001)
parser.add_argument("--all-box-regression", action="store_true", default=False)
parser.add_argument("--batch-size", type=int, default=16)
parser = parser.parse_args(args)
log_dir = "./runs/" + parser.title
writer = SummaryWriter(log_dir)
#pdb.set_trace()
with open(log_dir + '/config.csv', 'w') as f:
for item in vars(parser):
print(item + ',' + str(getattr(parser, item)))
f.write(item + ',' + str(getattr(parser, item)) + '\n')
if not os.path.isdir(log_dir + "/checkpoints"):
os.makedirs(log_dir + "/checkpoints")
if not os.path.isdir(log_dir + '/map_files'):
os.makedirs(log_dir + '/map_files')
dataset_train = CSVDataset(train_file=parser.train_file, class_list=parser.classes_file,
transform=transforms.Compose([Normalizer(), Augmenter(), Resizer()]))
if parser.val_file is None:
dataset_val = None
print('No validation annotations provided.')
else:
dataset_val = CSVDataset(train_file=parser.val_file, class_list=parser.classes_file,
transform=transforms.Compose([Normalizer(), Resizer()]))
sampler = AspectRatioBasedSampler(dataset_train, batch_size=parser.batch_size, drop_last=True)
dataloader_train = DataLoader(dataset_train, num_workers=8, collate_fn=collater, batch_sampler=sampler)
if dataset_val is not None:
sampler_val = AspectRatioBasedSampler(dataset_val, batch_size=parser.batch_size, drop_last=False)
dataloader_val = DataLoader(dataset_val, num_workers=8, collate_fn=collater, batch_sampler=sampler_val)
# Create the model
if parser.depth == 18:
retinanet = model.resnet18(num_classes=dataset_train.num_classes(), pretrained=True)
elif parser.depth == 34:
retinanet = model.resnet34(num_classes=dataset_train.num_classes(), pretrained=True)
elif parser.depth == 50:
retinanet = model.resnet50(num_classes=dataset_train.num_classes(), pretrained=True)
elif parser.depth == 101:
retinanet = model.resnet101(num_classes=dataset_train.num_classes(), pretrained=True)
elif parser.depth == 152:
retinanet = model.resnet152(num_classes=dataset_train.num_classes(), pretrained=True)
else:
raise ValueError('Unsupported model depth, must be one of 18, 34, 50, 101, 152')
if parser.resume_model:
x = torch.load(parser.resume_model)
if parser.reinit_classifier:
dummy = nn.Conv2d(256, 9*dataset_train.num_classes(), kernel_size=3, padding=1)
x['classificationModel.output.weight'] = dummy.weight.clone()
x['classificationModel.output.bias'] = dummy.bias.clone()
prior = 0.01
x['classificationModel.output.weight'].data.fill_(0)
x['classificationModel.output.bias'].data.fill_(-math.log((1.0 - prior) / prior))
retinanet.load_state_dict(x)
use_gpu = True
if use_gpu:
retinanet = retinanet.cuda()
retinanet = torch.nn.DataParallel(retinanet).cuda()
#torch.nn.DataParallel(retinanet).cuda()
retinanet.training = True
optimizer = optim.Adam(retinanet.parameters(), lr=parser.lr)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, patience=3, verbose=True)
loss_hist = collections.deque(maxlen=500)
retinanet.train()
retinanet.module.freeze_bn()
# x = torch.load('./csv_retinanet_20.pth')
# retinanet.module.load_state_dict(x)
print('Num training images: {}'.format(len(dataset_train)))
for epoch_num in range(parser.resume_epoch, parser.epochs):
retinanet.train()
retinanet.module.freeze_bn()
epoch_loss = []
i = 0
avg_class_loss = 0.0
avg_reg_loss = 0.0
for iter_num, data in enumerate(dataloader_train):
i += 1
try:
optimizer.zero_grad()
#pdb.set_trace()
shape = data['img'].shape[2] * data['img'].shape[3]
writer.add_scalar("train/image_shape", shape, epoch_num * (len(dataloader_train)) + i)
classification_loss, regression_loss = retinanet([data['img'].cuda().float(), data['annot'].cuda().float()])
classification_loss = classification_loss.mean()
regression_loss = regression_loss.mean()
avg_class_loss += classification_loss
avg_reg_loss += regression_loss
if i % 100 == 0:
writer.add_scalar("train/classification_loss", avg_class_loss / 100,
epoch_num * (len(dataloader_train)) + i)
writer.add_scalar("train/regression_loss", avg_reg_loss / 100,
epoch_num * (len(dataloader_train)) + i)
avg_class_loss = 0.0
avg_reg_loss = 0.0
loss = classification_loss + regression_loss
if bool(loss == 0):
continue
loss.backward()
torch.nn.utils.clip_grad_norm_(retinanet.parameters(), 0.1)
optimizer.step()
loss_hist.append(float(loss))
epoch_loss.append(float(loss))
print('Epoch: {} | Iteration: {} | Classification loss: {:1.5f} | Regression loss: {:1.5f} | Running loss: {:1.5f}'.format(epoch_num, iter_num, float(classification_loss), float(regression_loss), np.mean(loss_hist)))
del classification_loss
del regression_loss
except Exception as e:
print(e)
continue
if epoch_num%2 == 0:
print('Evaluating dataset')
retinanet.eval()
mAP, AP_string = csv_eval.evaluate(dataset_val, retinanet.module, score_threshold=0.1)
with open(log_dir + '/map_files/retinanet_{}.txt'.format(epoch_num), 'w') as f:
f.write(AP_string)
total = 0.0
all = 0.0
total_unweighted = 0.0
for c in mAP:
total += mAP[c][0]*mAP[c][1]
total_unweighted += mAP[c][0]
all += mAP[c][1]
writer.add_scalar("val/mAP", total/all, epoch_num)
writer.add_scalar("val/mAP_unweighted", total_unweighted / len(mAP), epoch_num)
scheduler.step(np.mean(epoch_loss))
torch.save(retinanet.module.state_dict(), log_dir + '/checkpoints/retinanet_{}.pth'.format(epoch_num))
retinanet.eval()
torch.save(retinanet.module.state_dict(), log_dir + '/checkpoints/model_final.pth'.format(epoch_num))
if __name__ == '__main__':
main()