-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
152 lines (126 loc) · 4.64 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
from flask import Flask, render_template, request, url_for, send_from_directory
from PIL import Image
import numpy as np
import time
import platform
from Model import Model
import random
import cv2
from io import StringIO, BytesIO
import base64
from datetime import datetime
import json
def readb64(base64_string):
sbuf = BytesIO()
sbuf.write(base64.b64decode(base64_string))
res = Image.open(sbuf)
return np.array(res)
def writeb64(img):
img_str = cv2.imencode('.bmp', img)[1]
imagebase64 = base64.b64encode(img_str)
imagebase64 = bytes.decode(imagebase64)
return imagebase64
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
model = Model("checkpoints/jpp.pb",
"checkpoints/gmm.pth",
"checkpoints/tom.pth",
use_cuda=True)
app = Flask(__name__)
BASE_DIR = os.path.abspath(os.path.dirname(__file__))
cloth_list_raw = os.listdir(os.path.join(BASE_DIR, "static", "img"))
cloth_list = []
counter = 0
for cloth in cloth_list_raw:
if 'jpg' in cloth:
cloth_list.append([os.path.join("static", "img", cloth), counter])
counter += 1
@app.route('/web')
def hello_world():
return render_template('login.html', img_list=cloth_list)
@app.route('/upload', methods=['GET', 'POST'])
def upload_image():
print(request.form)
print(request.files)
if (not len(request.files) == 2 or (len(request.form) == 1 and len(request.files) == 1)):
return render_template('login.html', info="selection error", img_list=cloth_list)
else:
index = 0
cloth_image = None
if len(request.form) == 1:
index = int(request.form['optionsRadios'][6:])
person_image = request.files['person_image']
if len(request.files) == 2:
cloth_image = request.files['cloth_image']
start_time = time.time()
o_name, h_name = run_model_web(
person_image, cloth_list[index][0].split("\\")[-1], cloth_image)
end_time = time.time()
if o_name is None:
return 'I told you only clothes image with shape 256*192*3'
else:
return render_template('login.html', img_list=cloth_list, result1=h_name, result2=o_name, info="time: %.3f" % (end_time-start_time))
def run_model_web(f, cloth_name, cloth_f=None):
if cloth_f is None:
print(f, cloth_name)
c_img = np.array(Image.open(cloth_name))
else:
print(f, cloth_f)
try:
c_img = np.array(Image.open(cloth_f))
except:
c_img = np.array(Image.open(cloth_name))
temp_o_name = os.path.join("static", "result", "%d_%s" % (
int(time.time()), cloth_name.split("/")[-1]))
temp_h_name = os.path.join("static", "human", "%d_%s" % (
int(time.time()), cloth_name.split("/")[-1]))
if c_img.shape[0] != 256 or c_img.shape[1] != 192 or c_img.shape[2] != 3:
return None, None
img = Image.open(f)
human_img = np.array(img)
out, v = model.predict(human_img, c_img, need_bright=False, keep_back=True)
print("v:"+str(v))
out = np.array(out, dtype='uint8')
img.save(temp_h_name)
Image.fromarray(out).save(temp_o_name, quality=95)
return temp_o_name, temp_h_name
def getimg():
data_str = request.data
data_str = bytes.decode(data_str)
data_str = data_str.replace('\n', '')
data_json = json.loads(data_str)
base64img_p = data_json['image_person']
img_person = readb64(base64img_p)
img_person = cv2.rotate(img_person, 2)
img_person = cv2.flip(img_person, 1)
base64img_c = data_json['image_cloth']
img_cloth = readb64(base64img_c)
return [img_person, img_cloth]
@app.route('/cloth', methods=['GET', 'POST'])
def Hello_cloth():
output_str = ""
output_json = {}
status = 'ok'
if request.method == 'POST':
input_person, input_cloth = getimg()
cv2.imwrite('in.jpg', input_person)
input_person = input_person[60:580, 45:435]
cv2.imwrite('in_2.jpg', input_person)
output_img, v = model.predict(input_person, input_cloth, need_bright=True, keep_back=True, need_dilate=True)
output_img = cv2.cvtColor(output_img, cv2.COLOR_RGB2BGR)
cv2.imwrite('out.jpg', output_img)
print("v:"+str(v))
output_base64 = writeb64(output_img)
if v < 0.1:
status = 'failure'
else:
status = 'ok'
output_json["status"] = status
output_json["output_image"] = output_base64
output_str = json.dumps(output_json)
return output_str
return "please use http client to request!"
if __name__ == '__main__':
app.jinja_env.auto_reload = True
app.config['TEMPLATES_AUTO_RELOAD'] = True
app.run()