-
Notifications
You must be signed in to change notification settings - Fork 102
/
Copy pathCHANGES
158 lines (80 loc) · 3.66 KB
/
CHANGES
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
-- python tutor: http://www.pythontutor.com/
-- show pybind11
https://pybind11.readthedocs.io/en/stable/basics.html#compiling-the-test-cases
-- use RISE:
https://damianavila.github.io/RISE/customize.html
-- merge in the REU python stuff
-- matplotlib example: mandelbrot
-- matplotlib state vs OO interfaces
http://pbpython.com/effective-matplotlib.html
-- git diff of jupyter notebooks:
https://nbdime.readthedocs.io/en/latest/
-- interactive notebook online:
http://mybinder.org/
http://ivory.idyll.org/blog/2016-mybinder.html
-- pandas:
https://github.com/jakevdp/PythonDataScienceHandbook
Star Wars API examples :)
http://nbviewer.jupyter.org/github/rasbt/pattern_classification/blob/master/data_viz/swapi_viz.ipynb
-- snakify:
https://snakify.org/
-- visualize python code execution line-by-line:
https://github.com/lgpage/nbtutor
-- python 3 for scientists:
http://python-3-for-scientists.readthedocs.io/en/latest/
-- restructure it all:
after basic introduction class, have students run through ipython
notebooks before class, and then in class, have a workbook that we
will fill in together, interactively
-- Machine learning: http://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer
-- post an "assignment" of tasks after each class to the discussion forum.
-- try git:
https://try.github.io/levels/1/challenges/1
-- python in HPC:
https://github.com/pyhpc/pyhpc-tutorial
-- new-style classes:
http://python-history.blogspot.com/2010/06/new-style-classes.html
-- decorators: http://thecodeship.com/patterns/guide-to-python-function-decorators/
-- use project Euler for in-class code projects
-- piazza or freeforums.org -- open discussion forum
-- tedEd -- exercises embedded in lectures
-- jiffylab -- set up a teaching environemtn
or ipython chrome app (colaboration ?)
-- do the codeacademy python track outside of class?
-- Stanford NIFTY: computer science projects for students
-- ipython widgets
-- wakari: host a notebook
-- plot.ly
-- coLaboratory Notebooks
-- available in the Chrome store
-- pythran?
-- nbdiff
-- mpld3 -- interactive matplotlib in ipython notebook
-- "seven ways to think like the web"
-- have a lecture at the start on "mananging projects with git, github, pull
requests
-- debugger: from Nathan on yt:
"The easiest way to debug issues like this is to use a python
debugger. I prefer ipdb, which has nice integration with IPython,
including tab completions. Others like pudb. There's also pdb,
which is part of the python standard library. All of these
debuggers have a gdb-like command-line interface, allowing printing
out backtraces, inspecting variables, and stepping through
code. Both ipdb and pudb can be installed via pip."
references:
-- "Computational Thinking" J M Wing (Communications in the ACM)
-- Computing 4 Physics: https://github.com/Computing4Physics/C4P
grading:
-- grading is based on discussion. Here's a loose metric:
by posting, I don't mean a "me to" type post, but something
either demonstrating a problem you don't understand (giving code),
asking for some detail from the lecture to be explained,
sharing a neat trick you found
A: 12 postings to the discussion board (essentially once a week)
+
a small example showing how you can apply what we've discussed
in class to your field.
A-: 8 postings to the discussion board
B+: 5 postings to the discussion board
B: 2 postings to the discussion board
-- hadoop streaming API: http://www.michael-noll.com/tutorials/writing-an-hadoop-mapreduce-program-in-python/