-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
executable file
·685 lines (586 loc) · 25.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
#!/usr/bin/env python
import matplotlib
matplotlib.use('Agg')
import argparse
import os
import shutil
import time
import sys
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import numpy as np
from random import shuffle
import pickle
import utils
# networks
import model_net
# triplet and loss
import triplet_net
import losses
# sampling
import hard_mining
# data loader
from triplet_cub_loader import CUBTriplets
from cub_loader import CUBImages
# sklearn for clustering and evaluating clusters
from sklearn.cluster import KMeans
import sklearn.metrics as metrics
# Training settings
parser = argparse.ArgumentParser(description='Metric Learning With Triplet Loss and Unknown Classes')
parser.add_argument('--batch-size', type=int, default=64,
help='input batch size for training (default: 64)')
parser.add_argument('--epochs', type=int, default=50,
help='number of epochs to train (default: 50)')
parser.add_argument('--lr', type=float, default=1e-4,
help='learning rate (default: 1e-4)')
parser.add_argument('--beta1', type=float, default=0.9,
help='adam beta1 (default: 0.9)')
parser.add_argument('--beta2', type=float, default=0.999,
help='adam beta2 (default: 0.999)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1,
help='random seed (default: 1)')
parser.add_argument('--margin', type=float, default=0.2,
help='margin for triplet loss (default: 0.2)')
parser.add_argument('--reg', type=float, default=1e-3,
help='regularization for embedding (default: 1e-3)')
parser.add_argument('--resume', type=str, default='',
help='path to latest checkpoint (default: none)')
parser.add_argument('--loss', type=str, default='HingeL2',
help='loss mechanism (default: HingeL2)')
parser.add_argument('--data', type=str, default='cub-2011',
help='dataset (default: cub-2011)')
parser.add_argument('--triplet-freq', type=int, default=10,
help='epochs before new triplets list (default: 10)')
parser.add_argument('--val-freq', type=int, default=2,
help='epochs before validating on validation set (default: 2)')
parser.add_argument('--results-freq', type=int, default=2,
help='epochs before saving results (default: 2)')
parser.add_argument('--test-results-freq', type=int, default=10,
help='epochs before saving results (default: 10)')
parser.add_argument('--network', type=str, default='Simple',
help='network architecture to use (default: Simple)')
parser.add_argument('--log-interval', type=int, default=2,
help='how many batches to wait before logging training status (default: 2)')
parser.add_argument('--feature-size', type=int, default=64,
help='size for embeddings/features to learn')
parser.add_argument('--num-train', type=int, default=4,
help='Number of train classes')
parser.add_argument('--num-val', type=int, default=4,
help='Number of validation classes')
parser.add_argument('--num-test', type=int, default=2,
help='Number of test classes')
parser.add_argument('--triplets-per-class', type=int, default=16,
help='Number of triplets per class')
parser.add_argument('--normalize-features', action='store_true', default=False,
help='normalize features')
parser.add_argument('--in-triplet-hard', action='store_true', default=False,
help='enables in triplet hard mining')
parser.add_argument('--mining', type=str, default='Hardest',
help='Method to use for mining hard examples')
# parameters
feature_size = 0
im_size = 64
use_cmd_split=True # if false, set the following values to something meaningful
num_train=0
num_val=0
num_test=0
train_classes=None # triplets_per_class*train_classes should be a multiple of batch size (64 by default)
val_classes=None
test_classes=None
triplets_per_class=0 # keep at least 16 triplets per class, later increase to 32/64
hard_frac = 0.6
# globals
best_acc = 0
best_precision = 0
best_recall = 0
best_f1 = 0
best_model = None
runs_dir = ''
epochs = list()
train_losses = list()
val_losses = list()
triplet_accs = list()
classification_accs = list()
sampler = None
triplet_batch_size = 16 # larger batch sizes throw gpu errors
# main
def main():
global args, feature_size, im_size
global best_acc, best_precision, best_recall, best_f1, best_model
global epochs, train_losses, val_losses
global triplet_accs, classification_accs
global runs_dir
global num_train, num_val, num_test, triplets_per_class, use_cmd_split
global train_classes, val_classes, test_classes
global Sampler
args = parser.parse_args()
runs_dir = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
('runs/r-%s-%s-f%d-%s' %
(args.network, args.loss, args.feature_size, time.strftime('%m-%d-%H-%M'))))
if not os.path.exists(runs_dir):
os.makedirs(runs_dir)
command = ' '.join(sys.argv)
with open(os.path.join(runs_dir, 'command.sh'), 'w') as c:
c.write(command)
c.write('\n')
# train/val/test split
if use_cmd_split:
num_train=args.num_train
num_val=args.num_val
num_test=args.num_test
train_classes=range(num_train) # triplets_per_class*train_classes should be a multiple of batch size (64 by default)
val_classes=range(num_train,num_train+num_val)
test_classes=range(num_train+num_val,num_train+num_val+num_test)
triplets_per_class=args.triplets_per_class
assert(triplets_per_class*len(train_classes)%args.batch_size == 0)
# cuda
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
# feature size
feature_size = args.feature_size
# network
Net = None
model = None
if args.network == 'Simple':
print('Using simple net')
Net = model_net.SimpleNet
elif args.network == 'Inception':
print('Using inception net')
Net = model_net.InceptionBased
# force image size to be 299
im_size = 299
## force feature size to be 2048
#feature_size = 2048
elif args.network == 'Squeeze':
print('Using squeezenet')
Net = model_net.SqueezeNetBased
# force image size to be 224
im_size = 224
elif args.network == 'Shallow':
print('Using shallownet')
Net = model_net.ShallowNet
# force image size to be 96
im_size = 96
elif args.network == 'ResNet':
print('Using resnet')
Net = model_net.ResNetBased
# force image size to be 224
im_size = 224
else:
assert(False)
model = Net(feature_size=feature_size, im_size=im_size, normalize=args.normalize_features)
# triplet network
tnet = triplet_net.TripletNet(model)
if args.cuda:
tnet.cuda()
model.cuda()
# loss to use
if args.loss == 'HingeL2':
criterion = losses.SimpleHingeLoss
elif args.loss == 'SquareHingeL2':
criterion = losses.SimpleSquareHingeLoss
elif args.loss == 'Ratio':
criterion = losses.RatioLoss
else:
assert(False)
# sampler to use
if args.mining == 'Hardest':
sampler = hard_mining.NHardestTripletSampler(
len(train_classes),
int((hard_frac+hard_frac/2)*triplet_batch_size))
elif args.mining == 'SemiHard':
sampler = hard_mining.SemiHardTripletSampler(
len(train_classes),
int((hard_frac+hard_frac/2)*triplet_batch_size))
elif args.mining == 'KMeans':
sampler = hard_mining.ClassificationBasedSampler(
len(train_classes),
int((hard_frac+hard_frac/2)*len(train_classes)*triplets_per_class)
)
else:
assert(False)
# data
dir_path = os.path.dirname(os.path.realpath(__file__))
if args.data == 'cub-2011':
TLoader = CUBTriplets
DLoader = CUBImages
data_path = os.path.join(dir_path, 'datasets/cub-2011')
else:
assert(False)
train_data_set_t = TLoader(data_path,
n_triplets=triplets_per_class*len(train_classes),
transform=transforms.Compose([
transforms.ToTensor(),
]),
classes=train_classes, im_size=im_size)
train_loader_t = torch.utils.data.DataLoader(
train_data_set_t, batch_size=triplet_batch_size, shuffle=True, **kwargs)
train_data_set = DLoader(data_path,
transform=transforms.Compose([
transforms.ToTensor(),
]),
classes=train_classes, im_size=im_size)
train_loader = torch.utils.data.DataLoader(
train_data_set, batch_size=args.batch_size, shuffle=False,
sampler=torch.utils.data.sampler.SequentialSampler(train_data_set),
**kwargs)
val_data_set_t = TLoader(data_path,
n_triplets=triplets_per_class*len(val_classes),
transform=transforms.Compose([
transforms.ToTensor(),
]),
classes=val_classes, im_size=im_size)
val_loader_t = torch.utils.data.DataLoader(
val_data_set_t, batch_size=triplet_batch_size, shuffle=True, **kwargs)
val_data_set = DLoader(data_path,
transform=transforms.Compose([
transforms.ToTensor(),
]),
classes=val_classes, im_size=im_size)
val_loader = torch.utils.data.DataLoader(
val_data_set, batch_size=args.batch_size, shuffle=False,
sampler=torch.utils.data.sampler.SequentialSampler(val_data_set),
**kwargs)
test_data_set = DLoader(data_path,
transform=transforms.Compose([
transforms.ToTensor(),
]),
classes=test_classes, im_size=im_size)
test_loader = torch.utils.data.DataLoader(
test_data_set, batch_size=args.batch_size, shuffle=False,
sampler=torch.utils.data.sampler.SequentialSampler(test_data_set),
**kwargs)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
tnet.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
net_params = tnet.SetLearningRate(args.lr*0.1, args.lr)
optimizer = optim.Adam(net_params, lr=args.lr,
betas=[args.beta1,args.beta2])
n_parameters = sum([p.data.nelement() for p in tnet.parameters()])
print(' + Number of params: {}'.format(n_parameters))
labels_true = None
labels_predicted = None
for epoch in range(1, args.epochs + 1):
# train for one epoch
train_loss = Train(train_loader_t, tnet, criterion, optimizer, epoch, sampler)
# evaluate on validation set
if epoch % args.val_freq == 0:
val_loss, triplet_acc = TestTriplets(val_loader_t, tnet, criterion)
val_results = ComputeClusters(val_loader, model, len(val_classes))
acc = val_results['accuracy']
precision = val_results['precision']
recall = val_results['recall']
f1 = val_results['f1']
labels_true = val_results['true']
labels_predicted = val_results['predicted']
# remember best acc and save checkpoint
is_best = acc > best_acc
if is_best:
best_acc = acc
best_precision = precision
best_recall = recall
best_f1 = f1
best_model = copy.deepcopy(model)
print('Best cluster: Accuracy %f, Precision %f, Recall %f, F1 %f\n' % (
best_acc, best_precision, best_recall, best_f1))
SaveCheckpoint({
'epoch': epoch + 1,
'state_dict': tnet.state_dict(),
'best_prec1': best_acc,
}, is_best)
# save data for 2 plots here:
# 1. train and test loss (triplet)
# 2. triplet and cluster based classification accuracy on validation set
epochs.append(epoch)
train_losses.append(train_loss)
val_losses.append(val_loss)
triplet_accs.append(triplet_acc)
classification_accs.append(acc)
# reset sampler and regenerate triplets every few epochs
if epoch % args.triplet_freq == 0:
if args.mining == 'KMeans':
print('Generating cluster classification on training data ...')
train_results = ComputeClusters(train_loader, model, len(train_classes))
labels_true = train_results['true']
labels_pred = train_results['predicted']
sampler.SampleNegatives(labels_true, labels_pred)
train_data_set_t.regenerate_triplet_list(sampler, hard_frac)
# then reset sampler
sampler.Reset()
# save final results and plot loss/accuracy with training
if epoch % args.results_freq == 0:
print('Results are being saved to %s' % runs_dir)
utils.SavePlots(runs_dir, epochs, train_losses, val_losses,
triplet_accs, classification_accs)
pickle.dump(epochs, open(os.path.join(runs_dir, 'epochs'), 'w'))
pickle.dump(train_losses, open(os.path.join(runs_dir, 'train_losses'), 'w'))
pickle.dump(val_losses, open(os.path.join(runs_dir, 'val_losses'), 'w'))
pickle.dump(triplet_accs, open(os.path.join(runs_dir, 'triplet_accs'), 'w'))
pickle.dump(classification_accs, open(os.path.join(runs_dir, 'classification_accs'), 'w'))
# at the end, save some query results for visualization
val_results = ComputeClusters(val_loader, best_model, len(val_classes))
SaveClusterResults(runs_dir, 'val', val_results, val_data_set)
if epoch % args.test_results_freq == 0:
# also run the model and kmeans over test data and save the results
# over test data, BUT DO NOT use this for tuning hyper-parameters
print('Saving test results!!')
test_results = ComputeClusters(test_loader, best_model, len(test_classes))
SaveClusterResults(runs_dir, 'test', test_results, test_data_set)
def Train(train_loader_t, tnet, criterion, optimizer, epoch, sampler):
losses = AverageMeter()
loss_accs = AverageMeter()
emb_norms = AverageMeter()
# switch to train mode
tnet.train()
loss_triplet = 0
loss_embedd = 0
assert(args.batch_size%triplet_batch_size == 0)
reset = args.batch_size/triplet_batch_size
for batch_idx, (data1, data2, data3, idx1, idx2, idx3) in enumerate(train_loader_t):
if batch_idx % reset == 0:
#print('Reset')
loss_triplet = 0
loss_embedd = 0
if args.cuda:
data1, data2, data3 = data1.cuda(), data2.cuda(), data3.cuda()
data1, data2, data3 = Variable(data1), Variable(data2), Variable(data3)
# compute output
dista, distb, distc, embedded_x, embedded_y, embedded_z = tnet(data1, data2, data3)
# 1 means, dista should be larger than distb
target = torch.FloatTensor(dista.size()).fill_(1)
if args.cuda:
target = target.cuda()
target = Variable(target)
# forward pass
loss_triplet += criterion(dista, distb, distc, target, args.margin, args.in_triplet_hard)
if args.mining == 'Hardest' or args.mining == 'SemiHard':
sampler.SampleNegatives(dista, distb, loss_triplet, (idx1, idx2, idx3))
loss_embedd += embedded_x.norm(2) + embedded_y.norm(2) + embedded_z.norm(2)
if batch_idx%reset != reset-1:
# don't do backward pass as of yet
continue
loss = (loss_triplet + args.reg * loss_embedd)/reset
# measure loss accuracy and record loss
loss_acc = LossAccuracy(dista, distb, distc, args.margin)
losses.update(loss_triplet.data[0], data1.size(0))
loss_accs.update(loss_acc, data1.size(0))
emb_norms.update(loss_embedd.data[0]/3, data1.size(0))
# compute gradient and do optimizer step
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(loss_triplet.data[0], args.reg*loss_embedd.data[0], args.reg,
loss_embedd.data[0])
print('Train Epoch: {} [{}/{}]\t'
'Loss: {:.4f} ({:.4f}) \t'
'Loss Acc: {:.2f}% ({:.2f}%) \t'
'Emb_Norm: {:.2f} ({:.2f})'.format(
epoch, (batch_idx+1) * len(data1), len(train_loader_t.dataset),
losses.val, losses.avg,
100. * loss_accs.val, 100. * loss_accs.avg,
emb_norms.val, emb_norms.avg))
return loss_accs.avg
def ComputeClusters(test_loader, enet, num_clusters):
global feature_size
enet.eval()
embeddings = np.zeros(shape=(len(test_loader.dataset), feature_size),
dtype=float)
labels_true = np.zeros(shape=(len(test_loader.dataset)), dtype=int)
for batch_idx, (data, classes, ids) in enumerate(test_loader):
if args.cuda:
data = data.cuda()
data = Variable(data)
# compute embeddings
f = enet(data)
embeddings[ids.numpy(),:] = f.cpu().data.numpy()
labels_true[ids.numpy()] = classes.cpu().numpy()
print('Generated embeddings, now running k-means for %d clusters...' % num_clusters)
# initialize centroid for each cluster
unique_classes = np.unique(labels_true)
num_classes = len(unique_classes)
initial_centers = np.zeros(shape=(num_clusters, feature_size), dtype=float)
for i in range(num_classes):
c_ids = np.where(labels_true == unique_classes[i])
use_im = np.random.choice(c_ids[0])
initial_centers[i,:] = embeddings[use_im,:]
kmeans_model = KMeans(n_clusters=num_clusters, random_state=1,
max_iter=1000, tol=1e-3,
init=initial_centers, n_init=1)
labels_predicted = kmeans_model.fit_predict(embeddings)
# map predicted clusters to actual class ids
cluster_to_class = np.zeros(shape=(num_classes,), dtype=int)
for i in range(num_classes):
# figure out which class this cluster must be
# set of points that belong to this cluster
cluster_points = np.where(labels_predicted == i)
# true class labels for these points
actual_labels = labels_true[cluster_points]
# map cluster to most frequently occuring class
unique, indices = np.unique(actual_labels, return_inverse=True)
mode = unique[np.argmax(
np.apply_along_axis(
np.bincount, 0, indices.reshape(actual_labels.shape),
None, np.max(indices) + 1), axis=0)]
cluster_to_class[i] = mode
# map cluster id to class ids
labels_copy = np.copy(labels_predicted)
for i in range(num_classes):
cluster_points = np.where(labels_copy == i)
labels_predicted[cluster_points] = cluster_to_class[i]
#print('Labels true')
#print(labels_true)
#print('Labels predicted')
#print(labels_predicted)
acc = metrics.accuracy_score(labels_true, labels_predicted)
nmi_s = metrics.cluster.normalized_mutual_info_score(
labels_true, labels_predicted)
mi = metrics.cluster.mutual_info_score(
labels_true, labels_predicted
)
h1 = metrics.cluster.entropy(labels_true)
h2 = metrics.cluster.entropy(labels_predicted)
nmi = 2*mi/(h1+h2)
print(mi, h1, h2)
precision = metrics.precision_score(labels_true, labels_predicted,
average='micro')
recall = metrics.recall_score(labels_true, labels_predicted,
average='micro')
f1_score = 2*precision*recall/(precision+recall)
print('Accuracy : %f' % acc)
print('NMI : %f vs old %f' % (nmi, nmi_s))
print('Precision : %f' % precision)
print('Recall : %f' % recall)
print('F1 score : %f' % f1_score)
print("")
results = {
'true' : labels_true,
'predicted' : labels_predicted,
'accuracy' : acc,
'precision' : precision,
'recall' : recall,
'f1' : f1_score,
'nmi' : nmi
}
return results
def SaveClusterResults(base_dir, prefix, results, data_set):
# first save stats
with open(os.path.join(base_dir, '%s_stats' % prefix), 'w') as r:
r.write('best accuracy : %f\n' % results['accuracy'])
r.write('best precision : %f\n' % results['precision'])
r.write('best recall : %f\n' % results['recall'])
r.write('best f1 : %f\n' % results['f1'])
r.write('best nmi : %f\n' % results['nmi'])
# now choose a random image from each class and find which points are in
# the cluster that the image lies in
labels_true = results['true']
labels_pred = results['predicted']
unique = np.unique(labels_true)
num_classes = len(unique)
paths = data_set.images
birdnames = data_set.birdnames
with open(os.path.join(base_dir, '%s_query' % prefix), 'w') as r:
for i in range(num_classes):
cid = unique[i]
# images predicted as cid
if cid in labels_pred:
idq1 = np.random.choice(np.where(labels_pred == cid)[0], 3)
else:
idq1 = np.random.choice(np.where(labels_true == cid)[0], 3)
class_pred1 = labels_pred[idq1]
# images that are cid
idq2 = np.random.choice(np.where(labels_true == cid)[0], 3)
for k in range(3):
r.write(paths[idq1[k]])
cc = labels_true[idq1[k]]
cp = labels_pred[idq1[k]]
r.write(':'+birdnames[cc]+' -> '+birdnames[cp])
r.write(', ')
for k in range(3):
r.write(paths[idq2[k]])
cc = labels_true[idq2[k]]
cp = labels_pred[idq2[k]]
r.write(':'+birdnames[cc]+' -> '+birdnames[cp])
r.write(', ')
r.write('\n')
def TestTriplets(test_loader, tnet, criterion):
losses = AverageMeter()
accs = AverageMeter()
# switch to evaluation mode
tnet.eval()
for batch_idx, (data1, data2, data3, _, _, _) in enumerate(test_loader):
if args.cuda:
data1, data2, data3 = data1.cuda(), data2.cuda(), data3.cuda()
data1, data2, data3 = Variable(data1), Variable(data2), Variable(data3)
# compute output
dista, distb, distc, embedded_x, embedded_y, embedded_z = tnet(data1, data2, data3)
target = torch.FloatTensor(dista.size()).fill_(1)
if args.cuda:
target = target.cuda()
target = Variable(target)
loss_triplet = criterion(dista, distb, distc, target, args.margin, args.in_triplet_hard).data[0]
loss_embedd = embedded_x.norm(2) + embedded_y.norm(2) + embedded_z.norm(2)
test_loss = loss_triplet + args.reg * loss_embedd
# measure accuracy and record loss
acc = LossAccuracy(dista, distb, distc, args.margin)
accs.update(acc, data1.size(0))
losses.update(test_loss.data[0], data1.size(0))
print('\nTest/val triplets: Average loss: %f, Accuracy: %f \n' %
(losses.avg, accs.avg))
return losses.avg, accs.avg
def SaveCheckpoint(state, is_best, filename='checkpoint.pth.tar'):
"""Saves checkpoint to disk"""
directory = os.path.join(runs_dir)
if not os.path.exists(directory):
os.makedirs(directory)
filename = os.path.join(directory, filename)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, os.path.join(directory, 'model_best.pth.tar'))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def LossAccuracy(dista, distb, distc, margin):
margin = 0
if args.in_triplet_hard:
dist_neg = torch.cat([distb, distc], dim=1)
dist_neg = torch.min(dist_neg, dim=1)[0]
else:
dist_neg = distb
pred = (dista - dist_neg - margin).cpu().data
return (pred > 0).sum()*1.0/dista.size()[0]
if __name__ == '__main__':
main()