-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathdecomp.js
662 lines (591 loc) · 21.6 KB
/
decomp.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
!function(e){if("object"==typeof exports&&"undefined"!=typeof module)module.exports=e();else if("function"==typeof define&&define.amd)define([],e);else{var f;"undefined"!=typeof window?f=window:"undefined"!=typeof global?f=global:"undefined"!=typeof self&&(f=self),f.decomp=e()}}(function(){var define,module,exports;return (function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);throw new Error("Cannot find module '"+o+"'")}var f=n[o]={exports:{}};t[o][0].call(f.exports,function(e){var n=t[o][1][e];return s(n?n:e)},f,f.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o<r.length;o++)s(r[o]);return s})({1:[function(_dereq_,module,exports){
module.exports = {
decomp: polygonDecomp,
quickDecomp: polygonQuickDecomp,
isSimple: polygonIsSimple,
removeCollinearPoints: polygonRemoveCollinearPoints,
removeDuplicatePoints: polygonRemoveDuplicatePoints,
makeCCW: polygonMakeCCW
};
/**
* Compute the intersection between two lines.
* @static
* @method lineInt
* @param {Array} l1 Line vector 1
* @param {Array} l2 Line vector 2
* @param {Number} precision Precision to use when checking if the lines are parallel
* @return {Array} The intersection point.
*/
function lineInt(l1,l2,precision){
precision = precision || 0;
var i = [0,0]; // point
var a1, b1, c1, a2, b2, c2, det; // scalars
a1 = l1[1][1] - l1[0][1];
b1 = l1[0][0] - l1[1][0];
c1 = a1 * l1[0][0] + b1 * l1[0][1];
a2 = l2[1][1] - l2[0][1];
b2 = l2[0][0] - l2[1][0];
c2 = a2 * l2[0][0] + b2 * l2[0][1];
det = a1 * b2 - a2*b1;
if (!scalar_eq(det, 0, precision)) { // lines are not parallel
i[0] = (b2 * c1 - b1 * c2) / det;
i[1] = (a1 * c2 - a2 * c1) / det;
}
return i;
}
/**
* Checks if two line segments intersects.
* @method segmentsIntersect
* @param {Array} p1 The start vertex of the first line segment.
* @param {Array} p2 The end vertex of the first line segment.
* @param {Array} q1 The start vertex of the second line segment.
* @param {Array} q2 The end vertex of the second line segment.
* @return {Boolean} True if the two line segments intersect
*/
function lineSegmentsIntersect(p1, p2, q1, q2){
var dx = p2[0] - p1[0];
var dy = p2[1] - p1[1];
var da = q2[0] - q1[0];
var db = q2[1] - q1[1];
// segments are parallel
if((da*dy - db*dx) === 0){
return false;
}
var s = (dx * (q1[1] - p1[1]) + dy * (p1[0] - q1[0])) / (da * dy - db * dx);
var t = (da * (p1[1] - q1[1]) + db * (q1[0] - p1[0])) / (db * dx - da * dy);
return (s>=0 && s<=1 && t>=0 && t<=1);
}
/**
* Get the area of a triangle spanned by the three given points. Note that the area will be negative if the points are not given in counter-clockwise order.
* @static
* @method area
* @param {Array} a
* @param {Array} b
* @param {Array} c
* @return {Number}
*/
function triangleArea(a,b,c){
return (((b[0] - a[0])*(c[1] - a[1]))-((c[0] - a[0])*(b[1] - a[1])));
}
function isLeft(a,b,c){
return triangleArea(a,b,c) > 0;
}
function isLeftOn(a,b,c) {
return triangleArea(a, b, c) >= 0;
}
function isRight(a,b,c) {
return triangleArea(a, b, c) < 0;
}
function isRightOn(a,b,c) {
return triangleArea(a, b, c) <= 0;
}
var tmpPoint1 = [],
tmpPoint2 = [];
/**
* Check if three points are collinear
* @method collinear
* @param {Array} a
* @param {Array} b
* @param {Array} c
* @param {Number} [thresholdAngle=0] Threshold angle to use when comparing the vectors. The function will return true if the angle between the resulting vectors is less than this value. Use zero for max precision.
* @return {Boolean}
*/
function collinear(a,b,c,thresholdAngle) {
if(!thresholdAngle){
return triangleArea(a, b, c) === 0;
} else {
var ab = tmpPoint1,
bc = tmpPoint2;
ab[0] = b[0]-a[0];
ab[1] = b[1]-a[1];
bc[0] = c[0]-b[0];
bc[1] = c[1]-b[1];
var dot = ab[0]*bc[0] + ab[1]*bc[1],
magA = Math.sqrt(ab[0]*ab[0] + ab[1]*ab[1]),
magB = Math.sqrt(bc[0]*bc[0] + bc[1]*bc[1]),
angle = Math.acos(dot/(magA*magB));
return angle < thresholdAngle;
}
}
function sqdist(a,b){
var dx = b[0] - a[0];
var dy = b[1] - a[1];
return dx * dx + dy * dy;
}
/**
* Get a vertex at position i. It does not matter if i is out of bounds, this function will just cycle.
* @method at
* @param {Number} i
* @return {Array}
*/
function polygonAt(polygon, i){
var s = polygon.length;
return polygon[i < 0 ? i % s + s : i % s];
}
/**
* Clear the polygon data
* @method clear
* @return {Array}
*/
function polygonClear(polygon){
polygon.length = 0;
}
/**
* Append points "from" to "to"-1 from an other polygon "poly" onto this one.
* @method append
* @param {Polygon} poly The polygon to get points from.
* @param {Number} from The vertex index in "poly".
* @param {Number} to The end vertex index in "poly". Note that this vertex is NOT included when appending.
* @return {Array}
*/
function polygonAppend(polygon, poly, from, to){
for(var i=from; i<to; i++){
polygon.push(poly[i]);
}
}
/**
* Make sure that the polygon vertices are ordered counter-clockwise.
* @method makeCCW
*/
function polygonMakeCCW(polygon){
var br = 0,
v = polygon;
// find bottom right point
for (var i = 1; i < polygon.length; ++i) {
if (v[i][1] < v[br][1] || (v[i][1] === v[br][1] && v[i][0] > v[br][0])) {
br = i;
}
}
// reverse poly if clockwise
if (!isLeft(polygonAt(polygon, br - 1), polygonAt(polygon, br), polygonAt(polygon, br + 1))) {
polygonReverse(polygon);
return true;
} else {
return false;
}
}
/**
* Reverse the vertices in the polygon
* @method reverse
*/
function polygonReverse(polygon){
var tmp = [];
var N = polygon.length;
for(var i=0; i!==N; i++){
tmp.push(polygon.pop());
}
for(var i=0; i!==N; i++){
polygon[i] = tmp[i];
}
}
/**
* Check if a point in the polygon is a reflex point
* @method isReflex
* @param {Number} i
* @return {Boolean}
*/
function polygonIsReflex(polygon, i){
return isRight(polygonAt(polygon, i - 1), polygonAt(polygon, i), polygonAt(polygon, i + 1));
}
var tmpLine1=[],
tmpLine2=[];
/**
* Check if two vertices in the polygon can see each other
* @method canSee
* @param {Number} a Vertex index 1
* @param {Number} b Vertex index 2
* @return {Boolean}
*/
function polygonCanSee(polygon, a,b) {
var p, dist, l1=tmpLine1, l2=tmpLine2;
if (isLeftOn(polygonAt(polygon, a + 1), polygonAt(polygon, a), polygonAt(polygon, b)) && isRightOn(polygonAt(polygon, a - 1), polygonAt(polygon, a), polygonAt(polygon, b))) {
return false;
}
dist = sqdist(polygonAt(polygon, a), polygonAt(polygon, b));
for (var i = 0; i !== polygon.length; ++i) { // for each edge
if ((i + 1) % polygon.length === a || i === a){ // ignore incident edges
continue;
}
if (isLeftOn(polygonAt(polygon, a), polygonAt(polygon, b), polygonAt(polygon, i + 1)) && isRightOn(polygonAt(polygon, a), polygonAt(polygon, b), polygonAt(polygon, i))) { // if diag intersects an edge
l1[0] = polygonAt(polygon, a);
l1[1] = polygonAt(polygon, b);
l2[0] = polygonAt(polygon, i);
l2[1] = polygonAt(polygon, i + 1);
p = lineInt(l1,l2);
if (sqdist(polygonAt(polygon, a), p) < dist) { // if edge is blocking visibility to b
return false;
}
}
}
return true;
}
/**
* Check if two vertices in the polygon can see each other
* @method canSee2
* @param {Number} a Vertex index 1
* @param {Number} b Vertex index 2
* @return {Boolean}
*/
function polygonCanSee2(polygon, a,b) {
// for each edge
for (var i = 0; i !== polygon.length; ++i) {
// ignore incident edges
if (i === a || i === b || (i + 1) % polygon.length === a || (i + 1) % polygon.length === b){
continue;
}
if( lineSegmentsIntersect(polygonAt(polygon, a), polygonAt(polygon, b), polygonAt(polygon, i), polygonAt(polygon, i+1)) ){
return false;
}
}
return true;
}
/**
* Copy the polygon from vertex i to vertex j.
* @method copy
* @param {Number} i
* @param {Number} j
* @param {Polygon} [targetPoly] Optional target polygon to save in.
* @return {Polygon} The resulting copy.
*/
function polygonCopy(polygon, i,j,targetPoly){
var p = targetPoly || [];
polygonClear(p);
if (i < j) {
// Insert all vertices from i to j
for(var k=i; k<=j; k++){
p.push(polygon[k]);
}
} else {
// Insert vertices 0 to j
for(var k=0; k<=j; k++){
p.push(polygon[k]);
}
// Insert vertices i to end
for(var k=i; k<polygon.length; k++){
p.push(polygon[k]);
}
}
return p;
}
/**
* Decomposes the polygon into convex pieces. Returns a list of edges [[p1,p2],[p2,p3],...] that cuts the polygon.
* Note that this algorithm has complexity O(N^4) and will be very slow for polygons with many vertices.
* @method getCutEdges
* @return {Array}
*/
function polygonGetCutEdges(polygon) {
var min=[], tmp1=[], tmp2=[], tmpPoly = [];
var nDiags = Number.MAX_VALUE;
for (var i = 0; i < polygon.length; ++i) {
if (polygonIsReflex(polygon, i)) {
for (var j = 0; j < polygon.length; ++j) {
if (polygonCanSee(polygon, i, j)) {
tmp1 = polygonGetCutEdges(polygonCopy(polygon, i, j, tmpPoly));
tmp2 = polygonGetCutEdges(polygonCopy(polygon, j, i, tmpPoly));
for(var k=0; k<tmp2.length; k++){
tmp1.push(tmp2[k]);
}
if (tmp1.length < nDiags) {
min = tmp1;
nDiags = tmp1.length;
min.push([polygonAt(polygon, i), polygonAt(polygon, j)]);
}
}
}
}
}
return min;
}
/**
* Decomposes the polygon into one or more convex sub-Polygons.
* @method decomp
* @return {Array} An array or Polygon objects.
*/
function polygonDecomp(polygon){
var edges = polygonGetCutEdges(polygon);
if(edges.length > 0){
return polygonSlice(polygon, edges);
} else {
return [polygon];
}
}
/**
* Slices the polygon given one or more cut edges. If given one, this function will return two polygons (false on failure). If many, an array of polygons.
* @method slice
* @param {Array} cutEdges A list of edges, as returned by .getCutEdges()
* @return {Array}
*/
function polygonSlice(polygon, cutEdges){
if(cutEdges.length === 0){
return [polygon];
}
if(cutEdges instanceof Array && cutEdges.length && cutEdges[0] instanceof Array && cutEdges[0].length===2 && cutEdges[0][0] instanceof Array){
var polys = [polygon];
for(var i=0; i<cutEdges.length; i++){
var cutEdge = cutEdges[i];
// Cut all polys
for(var j=0; j<polys.length; j++){
var poly = polys[j];
var result = polygonSlice(poly, cutEdge);
if(result){
// Found poly! Cut and quit
polys.splice(j,1);
polys.push(result[0],result[1]);
break;
}
}
}
return polys;
} else {
// Was given one edge
var cutEdge = cutEdges;
var i = polygon.indexOf(cutEdge[0]);
var j = polygon.indexOf(cutEdge[1]);
if(i !== -1 && j !== -1){
return [polygonCopy(polygon, i,j),
polygonCopy(polygon, j,i)];
} else {
return false;
}
}
}
/**
* Checks that the line segments of this polygon do not intersect each other.
* @method isSimple
* @param {Array} path An array of vertices e.g. [[0,0],[0,1],...]
* @return {Boolean}
* @todo Should it check all segments with all others?
*/
function polygonIsSimple(polygon){
var path = polygon, i;
// Check
for(i=0; i<path.length-1; i++){
for(var j=0; j<i-1; j++){
if(lineSegmentsIntersect(path[i], path[i+1], path[j], path[j+1] )){
return false;
}
}
}
// Check the segment between the last and the first point to all others
for(i=1; i<path.length-2; i++){
if(lineSegmentsIntersect(path[0], path[path.length-1], path[i], path[i+1] )){
return false;
}
}
return true;
}
function getIntersectionPoint(p1, p2, q1, q2, delta){
delta = delta || 0;
var a1 = p2[1] - p1[1];
var b1 = p1[0] - p2[0];
var c1 = (a1 * p1[0]) + (b1 * p1[1]);
var a2 = q2[1] - q1[1];
var b2 = q1[0] - q2[0];
var c2 = (a2 * q1[0]) + (b2 * q1[1]);
var det = (a1 * b2) - (a2 * b1);
if(!scalar_eq(det,0,delta)){
return [((b2 * c1) - (b1 * c2)) / det, ((a1 * c2) - (a2 * c1)) / det];
} else {
return [0,0];
}
}
/**
* Quickly decompose the Polygon into convex sub-polygons.
* @method quickDecomp
* @param {Array} result
* @param {Array} [reflexVertices]
* @param {Array} [steinerPoints]
* @param {Number} [delta]
* @param {Number} [maxlevel]
* @param {Number} [level]
* @return {Array}
*/
function polygonQuickDecomp(polygon, result,reflexVertices,steinerPoints,delta,maxlevel,level){
maxlevel = maxlevel || 100;
level = level || 0;
delta = delta || 25;
result = typeof(result)!=="undefined" ? result : [];
reflexVertices = reflexVertices || [];
steinerPoints = steinerPoints || [];
var upperInt=[0,0], lowerInt=[0,0], p=[0,0]; // Points
var upperDist=0, lowerDist=0, d=0, closestDist=0; // scalars
var upperIndex=0, lowerIndex=0, closestIndex=0; // Integers
var lowerPoly=[], upperPoly=[]; // polygons
var poly = polygon,
v = polygon;
if(v.length < 3){
return result;
}
level++;
if(level > maxlevel){
console.warn("quickDecomp: max level ("+maxlevel+") reached.");
return result;
}
for (var i = 0; i < polygon.length; ++i) {
if (polygonIsReflex(poly, i)) {
reflexVertices.push(poly[i]);
upperDist = lowerDist = Number.MAX_VALUE;
for (var j = 0; j < polygon.length; ++j) {
if (isLeft(polygonAt(poly, i - 1), polygonAt(poly, i), polygonAt(poly, j)) && isRightOn(polygonAt(poly, i - 1), polygonAt(poly, i), polygonAt(poly, j - 1))) { // if line intersects with an edge
p = getIntersectionPoint(polygonAt(poly, i - 1), polygonAt(poly, i), polygonAt(poly, j), polygonAt(poly, j - 1)); // find the point of intersection
if (isRight(polygonAt(poly, i + 1), polygonAt(poly, i), p)) { // make sure it's inside the poly
d = sqdist(poly[i], p);
if (d < lowerDist) { // keep only the closest intersection
lowerDist = d;
lowerInt = p;
lowerIndex = j;
}
}
}
if (isLeft(polygonAt(poly, i + 1), polygonAt(poly, i), polygonAt(poly, j + 1)) && isRightOn(polygonAt(poly, i + 1), polygonAt(poly, i), polygonAt(poly, j))) {
p = getIntersectionPoint(polygonAt(poly, i + 1), polygonAt(poly, i), polygonAt(poly, j), polygonAt(poly, j + 1));
if (isLeft(polygonAt(poly, i - 1), polygonAt(poly, i), p)) {
d = sqdist(poly[i], p);
if (d < upperDist) {
upperDist = d;
upperInt = p;
upperIndex = j;
}
}
}
}
// if there are no vertices to connect to, choose a point in the middle
if (lowerIndex === (upperIndex + 1) % polygon.length) {
//console.log("Case 1: Vertex("+i+"), lowerIndex("+lowerIndex+"), upperIndex("+upperIndex+"), poly.size("+polygon.length+")");
p[0] = (lowerInt[0] + upperInt[0]) / 2;
p[1] = (lowerInt[1] + upperInt[1]) / 2;
steinerPoints.push(p);
if (i < upperIndex) {
//lowerPoly.insert(lowerPoly.end(), poly.begin() + i, poly.begin() + upperIndex + 1);
polygonAppend(lowerPoly, poly, i, upperIndex+1);
lowerPoly.push(p);
upperPoly.push(p);
if (lowerIndex !== 0){
//upperPoly.insert(upperPoly.end(), poly.begin() + lowerIndex, poly.end());
polygonAppend(upperPoly, poly,lowerIndex,poly.length);
}
//upperPoly.insert(upperPoly.end(), poly.begin(), poly.begin() + i + 1);
polygonAppend(upperPoly, poly,0,i+1);
} else {
if (i !== 0){
//lowerPoly.insert(lowerPoly.end(), poly.begin() + i, poly.end());
polygonAppend(lowerPoly, poly,i,poly.length);
}
//lowerPoly.insert(lowerPoly.end(), poly.begin(), poly.begin() + upperIndex + 1);
polygonAppend(lowerPoly, poly,0,upperIndex+1);
lowerPoly.push(p);
upperPoly.push(p);
//upperPoly.insert(upperPoly.end(), poly.begin() + lowerIndex, poly.begin() + i + 1);
polygonAppend(upperPoly, poly,lowerIndex,i+1);
}
} else {
// connect to the closest point within the triangle
//console.log("Case 2: Vertex("+i+"), closestIndex("+closestIndex+"), poly.size("+polygon.length+")\n");
if (lowerIndex > upperIndex) {
upperIndex += polygon.length;
}
closestDist = Number.MAX_VALUE;
if(upperIndex < lowerIndex){
return result;
}
for (var j = lowerIndex; j <= upperIndex; ++j) {
if (
isLeftOn(polygonAt(poly, i - 1), polygonAt(poly, i), polygonAt(poly, j)) &&
isRightOn(polygonAt(poly, i + 1), polygonAt(poly, i), polygonAt(poly, j))
) {
d = sqdist(polygonAt(poly, i), polygonAt(poly, j));
if (d < closestDist && polygonCanSee2(poly, i, j)) {
closestDist = d;
closestIndex = j % polygon.length;
}
}
}
if (i < closestIndex) {
polygonAppend(lowerPoly, poly,i,closestIndex+1);
if (closestIndex !== 0){
polygonAppend(upperPoly, poly,closestIndex,v.length);
}
polygonAppend(upperPoly, poly,0,i+1);
} else {
if (i !== 0){
polygonAppend(lowerPoly, poly,i,v.length);
}
polygonAppend(lowerPoly, poly,0,closestIndex+1);
polygonAppend(upperPoly, poly,closestIndex,i+1);
}
}
// solve smallest poly first
if (lowerPoly.length < upperPoly.length) {
polygonQuickDecomp(lowerPoly,result,reflexVertices,steinerPoints,delta,maxlevel,level);
polygonQuickDecomp(upperPoly,result,reflexVertices,steinerPoints,delta,maxlevel,level);
} else {
polygonQuickDecomp(upperPoly,result,reflexVertices,steinerPoints,delta,maxlevel,level);
polygonQuickDecomp(lowerPoly,result,reflexVertices,steinerPoints,delta,maxlevel,level);
}
return result;
}
}
result.push(polygon);
return result;
}
/**
* Remove collinear points in the polygon.
* @method removeCollinearPoints
* @param {Number} [precision] The threshold angle to use when determining whether two edges are collinear. Use zero for finest precision.
* @return {Number} The number of points removed
*/
function polygonRemoveCollinearPoints(polygon, precision){
var num = 0;
for(var i=polygon.length-1; polygon.length>3 && i>=0; --i){
if(collinear(polygonAt(polygon, i-1),polygonAt(polygon, i),polygonAt(polygon, i+1),precision)){
// Remove the middle point
polygon.splice(i%polygon.length,1);
num++;
}
}
return num;
}
/**
* Remove duplicate points in the polygon.
* @method removeDuplicatePoints
* @param {Number} [precision] The threshold to use when determining whether two points are the same. Use zero for best precision.
*/
function polygonRemoveDuplicatePoints(polygon, precision){
for(var i=polygon.length-1; i>=1; --i){
var pi = polygon[i];
for(var j=i-1; j>=0; --j){
if(points_eq(pi, polygon[j], precision)){
polygon.splice(i,1);
continue;
}
}
}
}
/**
* Check if two scalars are equal
* @static
* @method eq
* @param {Number} a
* @param {Number} b
* @param {Number} [precision]
* @return {Boolean}
*/
function scalar_eq(a,b,precision){
precision = precision || 0;
return Math.abs(a-b) <= precision;
}
/**
* Check if two points are equal
* @static
* @method points_eq
* @param {Array} a
* @param {Array} b
* @param {Number} [precision]
* @return {Boolean}
*/
function points_eq(a,b,precision){
return scalar_eq(a[0],b[0],precision) && scalar_eq(a[1],b[1],precision);
}
},{}]},{},[1])
(1)
});