-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathoscilloscope.py
206 lines (159 loc) · 6.01 KB
/
oscilloscope.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from functools import wraps
from typing import Union, Callable
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
import zproc
from matplotlib.lines import Line2D
zproc_ctx = zproc.Context()
ZPROC_INTERNAL_NAMESPACE = "oscilloscope"
class Normalizer:
def __init__(self, output_range: tuple = (0, 100)):
self._input_min = 0
self._input_max = 0
self._output_min, self._output_max = output_range
self._output_diff = self._output_max - self._output_min
self._norm_factor = 0
def _refresh_norm_factor(self):
self._norm_factor = 1 / (self._input_max - self._input_min) * self._output_diff
def _refresh_bounds(self, input_value):
if input_value < self._input_min:
self._input_min = input_value
self._refresh_norm_factor()
elif input_value > self._input_max:
self._input_max = input_value
self._refresh_norm_factor()
def normalize(self, input_value):
self._refresh_bounds(input_value)
return (input_value - self._input_min) * self._norm_factor + self._output_min
def shift(ax, x):
return np.delete(np.append(ax, x), 0)
class AnimationScope:
def __init__(
self,
ax: plt.Axes,
window_sec,
frame_interval_sec,
row_index,
col_index,
intensity,
padding_percent,
):
self.row_index = row_index
self.col_index = col_index
self.ax = ax
self.padding_percent = padding_percent
self.frame_interval_sec = frame_interval_sec
self.num_frames = int(window_sec / self.frame_interval_sec)
self.y_values = np.zeros([1, self.num_frames])
self.x_values = np.linspace(-window_sec, 0, self.num_frames)
self.line = Line2D(self.x_values, self.y_values, linewidth=intensity)
self.ax.add_line(self.line)
self.ax.set_xlim(-window_sec, 0)
self.y_limits = np.array([0, np.finfo(np.float).eps])
self.ax.set_ylim(self.y_limits[0], self.y_limits[1])
self._internal_state = zproc_ctx.create_state(
namespace=ZPROC_INTERNAL_NAMESPACE
)
def _adjust_ylim(self):
padding = self.padding_percent * (self.y_limits[1] - self.y_limits[0]) / 100
self.ax.set_ylim(self.y_limits[0] - padding, self.y_limits[1] + padding)
def _adjust_ylim_if_req(self, amplitude):
if amplitude < self.y_limits[0]:
self.y_limits[0] = amplitude
self._adjust_ylim()
elif amplitude > self.y_limits[1]:
self.y_limits[1] = amplitude
self._adjust_ylim()
def draw(self, _):
try:
amplitude, kwargs = self._internal_state[(self.row_index, self.col_index)]
except KeyError:
pass
else:
# set the labels
self.ax.set(**kwargs)
try:
size = np.ceil(self.num_frames / len(amplitude))
self.y_values = np.resize(
np.repeat(np.array([amplitude]), size, axis=1), [1, self.num_frames]
)
self._adjust_ylim_if_req(np.min(self.y_values))
self._adjust_ylim_if_req(np.max(self.y_values))
except TypeError:
self.y_values = shift(self.y_values, amplitude)
self._adjust_ylim_if_req(amplitude)
# update line
self.line.set_data(self.x_values, self.y_values)
return [self.line]
def _signal_process(ctx: zproc.Context, fn: Callable, normalize: bool, *args, **kwargs):
if normalize:
normalizer = Normalizer()
def _normalize(val):
return normalizer.normalize(val)
else:
def _normalize(val):
return val
state = ctx.create_state()
_internal_state = state.fork(namespace=ZPROC_INTERNAL_NAMESPACE)
def draw(amplitude, *, row=0, col=0, **kwargs):
amplitude = _normalize(amplitude)
_internal_state[(row, col)] = amplitude, kwargs
state.draw = draw
fn(state, *args, **kwargs)
class Osc:
def __init__(
self,
*,
fps: Union[float, int] = 24,
window_sec: Union[float, int] = 5,
intensity: Union[float, int] = 2.5,
normalize: bool = False,
xlabel: str = "Time (sec)",
ylabel: str = "Amplitude",
nrows: int = 1,
ncols: int = 1,
padding_percent: Union[float, int] = 0,
):
frame_interval_sec = 1 / fps
self.nrows = nrows
self.ncols = ncols
self.normalize = normalize
self.xlabel = xlabel
self.ylabel = ylabel
self.anim_scopes = {}
self.gc_protect = []
fig, axes = plt.subplots(self.nrows, self.ncols, squeeze=False)
for row_index, row_axes in enumerate(axes):
for col_index, ax in enumerate(row_axes):
scope = AnimationScope(
ax=ax,
window_sec=window_sec,
frame_interval_sec=frame_interval_sec,
row_index=row_index,
col_index=col_index,
intensity=intensity,
padding_percent=padding_percent,
)
self.gc_protect.append(
animation.FuncAnimation(
fig, scope.draw, interval=frame_interval_sec * 1000, blit=True
)
)
self.anim_scopes[(row_index, col_index)] = scope
def signal(self, fn=None, **process_kwargs):
if fn is None:
@wraps(fn)
def wrapper(fn):
return self.signal(fn, **process_kwargs)
return wrapper
process_kwargs["start"] = False
process_kwargs["args"] = (fn, self.normalize, *process_kwargs.get("args", ()))
return zproc_ctx.spawn(_signal_process, **process_kwargs)
def start(self):
zproc_ctx.start_all()
plt.show()
zproc_ctx.wait()
def stop(self):
zproc_ctx.stop_all()
plt.close()