-
-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathdither.py
122 lines (94 loc) · 3.48 KB
/
dither.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from __future__ import division
from skimage import img_as_float, io
from skimage.filters import threshold_otsu
import numpy as np
def quantize(image, L=1, N=4):
"""Quantize an image.
Parameters
----------
image : array_like
Input image.
L : float
Maximum input value.
N : int
Number of quantization levels.
"""
T = np.linspace(0, L, N, endpoint=False)[1:]
return np.digitize(image.flat, T).reshape(image.shape)
def dither(image, N=4, positions=None, weights=None):
"""Quantize an image, using dithering.
Parameters
----------
image : ndarray
Input image.
N : int
Number of quantization levels.
positions : list of (i, j) offsets
Position offset to which the quantization error is distributed.
By default, implement Sierra's "Filter Lite".
weights : list of ints
Weights for propagated error.
By default, implement Sierra's "Filter Lite".
References
----------
http://www.efg2.com/Lab/Library/ImageProcessing/DHALF.TXT
"""
image = img_as_float(image.copy())
if positions is None or weights is None:
positions = [(0, 1), (1, -1), (1, 0)]
weights = [2, 1, 1]
weights = weights / np.sum(weights)
T = np.linspace(0, 1, N, endpoint=False)[1:]
rows, cols = image.shape
out = np.zeros_like(image, dtype=float)
for i in range(rows):
for j in range(cols):
# Quantize
out[i, j], = np.digitize([image[i, j]], T)
# Propagate quantization noise
d = (image[i, j] - out[i, j] / (N - 1))
for (ii, jj), w in zip(positions, weights):
ii = i + ii
jj = j + jj
if ii < rows and jj < cols:
image[ii, jj] += d * w
return out
def floyd_steinberg(image, N):
offsets = [(0, 1), (1, -1), (1, 0), (1, 1)]
weights = [ 7,
3, 5, 1]
return dither(image, N, offsets, weights)
def stucki(image, N):
offsets = [(0, 1), (0, 2), (1, -2), (1, -1),
(1, 0), (1, 1), (1, 2),
(2, -2), (2, -1), (2, 0), (2, 1), (2, 2)]
weights = [ 8, 4,
2, 4, 8, 4, 2,
1, 2, 4, 2, 1]
return dither(image, N, offsets, weights)
# Image with 255 color levels
img = img_as_float(io.imread('data/david.png'))
# Quantize to N levels
N = 2
img_quant = quantize(img, N=N)
img_dither_random = img + np.abs(np.random.normal(size=img.shape,
scale=1./(3 * N)))
img_dither_random = quantize(img_dither_random, L=1, N=N)
img_dither_fs = floyd_steinberg(img, N=N)
img_dither_stucki = stucki(img, N=N)
import matplotlib.pyplot as plt
f, ax = plt.subplots(2, 3, subplot_kw={'xticks': [], 'yticks': []})
ax[0, 0].imshow(img, cmap=plt.cm.gray, interpolation='nearest')
ax[0, 1].imshow(img_quant, cmap=plt.cm.gray, interpolation='nearest')
ax[0, 2].imshow(img > threshold_otsu(img), cmap=plt.cm.gray, interpolation='nearest')
#ax[0, 2].set_visible(False)
ax[1, 0].imshow(img_dither_random, cmap=plt.cm.gray, interpolation='nearest')
ax[1, 1].imshow(img_dither_fs, cmap=plt.cm.gray, interpolation='nearest')
ax[1, 2].imshow(img_dither_stucki, cmap=plt.cm.gray, interpolation='nearest')
ax[0, 0].set_title('Input')
ax[0, 1].set_title('Quantization (N=%d)' % N)
ax[0, 2].set_title('Otsu threshold')
ax[1, 0].set_title('Dithering: Image + Noise')
ax[1, 1].set_title('Floyd-Steinberg')
ax[1, 2].set_title('Stucki')
plt.show()