-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathtrain.py
executable file
·97 lines (79 loc) · 3.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
"""Main training file for PFE
"""
# MIT License
#
# Copyright (c) 2019 Yichun Shi
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import os
import sys
import time
import imp
import argparse
import tensorflow as tf
import numpy as np
from utils import utils
from utils.imageprocessing import preprocess
from utils.dataset import Dataset
from network import Network
def main(args):
# I/O
config_file = args.config_file
config = imp.load_source('config', config_file)
if args.name:
config.name = args.name
trainset = Dataset(config.train_dataset_path)
network = Network()
network.initialize(config, trainset.num_classes)
# Initalization for running
log_dir = utils.create_log_dir(config, config_file)
summary_writer = tf.summary.FileWriter(log_dir, network.graph)
if config.restore_model:
network.restore_model(config.restore_model, config.restore_scopes)
proc_func = lambda images: preprocess(images, config, True)
trainset.start_batch_queue(config.batch_format, proc_func=proc_func)
# Main Loop
print('\nStart Training\nname: {}\n# epochs: {}\nepoch_size: {}\nbatch_size: {}\n'.format(
config.name, config.num_epochs, config.epoch_size, config.batch_format['size']))
global_step = 0
start_time = time.time()
for epoch in range(config.num_epochs):
# Training
for step in range(config.epoch_size):
# Prepare input
learning_rate = utils.get_updated_learning_rate(global_step, config)
batch = trainset.pop_batch_queue()
wl, sm, global_step = network.train(batch['image'], batch['label'], learning_rate, config.keep_prob)
wl['lr'] = learning_rate
# Display
if step % config.summary_interval == 0:
duration = time.time() - start_time
start_time = time.time()
utils.display_info(epoch, step, duration, wl)
summary_writer.add_summary(sm, global_step=global_step)
# Save the model
network.save_model(log_dir, global_step)
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument("config_file", help="The path to the training configuration file",
type=str)
parser.add_argument("--name", help="Rename the log dir",
type=str, default=None)
args = parser.parse_args()
main(args)