-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path132.py
51 lines (44 loc) · 1.16 KB
/
132.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""On exploite: si n divisible par a alors R(n) divisible par R(a)"""
def is_prime(n):
if n == 2 or n == 3: return True
i = 2
while i <= n**0.5:
if not n%i: return False
i += 1
return True
assert is_prime(11)
assert is_prime(101)
assert is_prime(37)
assert not is_prime(16)
assert not is_prime(20)
def decompose_primes(n):
d = {}
k, i = n, 2
while k > 1 and i <= n**0.5:
if not k%i:
if d.has_key(i): d[i] += 1
else: d[i] = 1
k = k/i
else:
i += 1
if k!= 1:
if d.has_key(k): d[k] += 1
else: d[k] = 1
return d
assert decompose_primes(11) == {11: 1}
assert decompose_primes(20) == {2: 2, 5: 1}
print decompose_primes(10**9)
#print [n for n in xrange(10000) if is_prime(n) if str(n)[-1] == '1']
#print '\n'.join(['%s, %s : %s' % (i, '1'*i, str(decompose_primes(int('1'*i))))
# for i in xrange(2, 17)])
print decompose_primes(int('1'*20))
print decompose_primes(int('1'*25))
#from sets import Set
#s = Set()
#i = 2
#while len(s) < 40:
# for k in decompose_primes(int('1'*i)):
# s.add(k)
# print i, len(s)
# i += 1
#print s