-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path09-Coinduction.agda
301 lines (217 loc) · 7.79 KB
/
09-Coinduction.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
module 09-Coinduction where
open import Function
open import Data.Nat
open import Data.Vec as Vec
using (Vec; []; _∷_)
open import Relation.Binary.PropositionalEquality
open import Coinduction
{-
infix 1000 ♯_
postulate
∞ : (A : Set) → Set
♯_ : {A : Set} → A → ∞ A
♭ : {A : Set} → ∞ A → A
♯ f x is parsed as ♯ (f x)
♯_ is "delay".
♭ is "force".
Conceptually:
♭ (♯ x) = x
However, #_ can't be pattern-matched on!
-}
--
-- Streams
--
open import Data.Stream
{-
infixr 5 _∷_
data Stream (A : Set) : Set where
_∷_ : (x : A) (xs : ∞ (Stream A)) → Stream A
-}
zeros : Stream ℕ
zeros = 0 ∷ ♯ zeros
nats≥ : ℕ → Stream ℕ
nats≥ n = n ∷ ♯ nats≥ (suc n)
--
-- Functions on infinite data.
--
-- See map, zipWith, take, repeat, iterate.
5-zeros : take 5 zeros ≡ zero ∷ zero ∷ zero ∷ zero ∷ zero ∷ []
5-zeros = refl
3-nats≥2 : take 3 (nats≥ 2) ≡ 2 ∷ 3 ∷ 4 ∷ []
3-nats≥2 = refl
--
-- Bisimilarity
--
{-
infix 4 _≈_
data _≈_ {A} : Stream A → Stream A → Set where
_∷_ : ∀ {x y xs ys}
(x≡ : x ≡ y) (xs≈ : ∞ (♭ xs ≈ ♭ ys)) → x ∷ xs ≈ y ∷ ys
-}
ones : Stream ℕ
ones = 1 ∷ ♯ ones
ones′ : Stream ℕ
ones′ = map suc zeros
-- A proof by coinduction (bisimilarity).
{-
ones ⇒ 1 ∷ ones
ones′ ⇒ map suc zeros ⇒ map suc (0 ∷ ♯ zeros) ⇒
⇒ 1 ∷ ♯ map suc (♭ (♯ zeros)) ⇒ 1 ∷ ♯ map suc zeros
⇒ 1 ∷ ♯ ones′
Hence, ones ≈ ♯ ones′ ⇒ 1 ∷ ones ≈ 1 ∷ ♯ ones′
and we never obtain differing stream elements. :-)
-}
ones≈ones′ : ones ≈ ones′
ones≈ones′ = refl ∷ ♯ ones≈ones′
-- More proofs by coinduction
-- map-iterate
map-iterate : {A : Set} (f : A → A) → (x : A) →
map f (iterate f x) ≈ iterate f (f x)
map-iterate f x = refl ∷ ♯ map-iterate f (f x)
-- map-comp
map-comp : {A B C : Set} (f : A → B) (g : B → C) (xs : Stream A) →
map g (map f xs) ≈ map (g ∘ f) xs
map-comp f g (x ∷ xs) = refl ∷ ♯ map-comp f g (♭ xs)
--
-- ≈-reasoning
--
-- ≈ is reflexive, symmetric and transitive
--
≈-refl : ∀ {ℓ} {A : Set ℓ} → (xs : Stream A) → xs ≈ xs
≈-refl {A} (x ∷ xs) = refl ∷ ♯ ≈-refl (♭ xs)
≈-sym : ∀ {ℓ} {A : Set ℓ} → {xs ys : Stream A} → xs ≈ ys → ys ≈ xs
≈-sym (x≡y ∷ xs≈ys) = sym x≡y ∷ ♯ ≈-sym (♭ xs≈ys)
≈-trans : ∀ {ℓ} {A : Set ℓ} → {xs ys zs : Stream A} →
xs ≈ ys → ys ≈ zs → xs ≈ zs
≈-trans (x≡y ∷ xs≈ys) (y≡z ∷ ys≈zs) =
trans x≡y y≡z ∷ ♯ (≈-trans (♭ xs≈ys) (♭ ys≈zs))
--
-- Problems with productivity
--
module fib-bad where
{-# TERMINATING #-}
fib : Stream ℕ
fib = 0 ∷ ♯ zipWith _+_ fib (1 ∷ ♯ fib)
7-fib : take 7 fib ≡ 0 ∷ 1 ∷ 1 ∷ 2 ∷ 3 ∷ 5 ∷ 8 ∷ []
7-fib = refl
module fib-good where
data StreamP : Set → Set₁ where
_∷P_ : ∀ {A} (x : A) (xs : ∞ (StreamP A)) → StreamP A
zipWithP : ∀{A B C} → (f : A → B → C) →
(xs : StreamP A) (ys : StreamP B) → StreamP C
data StreamW : Set → Set₁ where
_∷W_ : ∀ {A} (x : A) (xs : StreamP A) → StreamW A
zipWithW : ∀ {A B C} → (f : A → B → C) →
(xs : StreamW A) (ys : StreamW B) → StreamW C
zipWithW f (x ∷W xs) (y ∷W ys) = (f x y) ∷W zipWithP f xs ys
whnf : ∀ {A} → StreamP A → StreamW A
whnf (x ∷P xs) = x ∷W ♭ xs
whnf (zipWithP f xs ys) = zipWithW f (whnf xs) (whnf ys)
mutual
⟦_⟧P : ∀ {A} → StreamP A → Stream A
⟦ xs ⟧P = ⟦ whnf xs ⟧W
⟦_⟧W : ∀ {A} → StreamW A → Stream A
⟦ x ∷W xs ⟧W = x ∷ ♯ ⟦ xs ⟧P
-- fib
fibP : StreamP ℕ
fibP = 0 ∷P ♯ zipWithP _+_ fibP (1 ∷P ♯ fibP)
fib : Stream ℕ
fib = ⟦ fibP ⟧P
7-fib : take 7 fib ≡ 0 ∷ 1 ∷ 1 ∷ 2 ∷ 3 ∷ 5 ∷ 8 ∷ []
7-fib = refl
-- zipWith-hom
zipWith-hom : ∀ {A B C} → (f : A → B → C) →
(xs : StreamP A) (ys : StreamP B) →
⟦ zipWithP f xs ys ⟧P ≈ zipWith f ⟦ xs ⟧P ⟦ ys ⟧P
zipWith-hom f xs ys with whnf xs | whnf ys
... | x ∷W xs' | y ∷W ys' =
refl ∷ ♯ (zipWith-hom f xs' ys')
{-
zipWith-cong : ∀ {A B C} (_∙_ : A → B → C) {xs xs′ ys ys′} →
xs ≈ xs′ → ys ≈ ys′ → zipWith _∙_ xs ys ≈ zipWith _∙_ xs′ ys′
-}
fib-correct : fib ≈ 0 ∷ ♯ zipWith _+_ fib (1 ∷ ♯ fib)
fib-correct =
refl ∷ ♯ ≈-trans (zipWith-hom _+_ fibP (1 ∷P ♯ fibP))
(zipWith-cong _+_ (≈-refl fib) (refl ∷ ♯ ≈-refl fib))
--
-- ≈-reasoning (a DSL)
--
module ≈-Reasoning-bad {A : Set} where
infix 3 _∎
infixr 2 _≈⟨_⟩_
_≈⟨_⟩_ : ∀ xs {ys zs : Stream A} → xs ≈ ys → ys ≈ zs → xs ≈ zs
_ ≈⟨ xs≈ys ⟩ ys≈zs = ≈-trans xs≈ys ys≈zs
_∎ : ∀ (xs : Stream A) → xs ≈ xs
xs ∎ = ≈-refl xs
module ≈-Reasoning-bad-test {A : Set} where
-- Doesn't work... Here Agda is unable to prove productivity...
{-# TERMINATING #-}
ones≈ones′₁ : ones ≈ ones′
ones≈ones′₁ =
ones
≈⟨ refl ∷ ♯ ≈-refl ones ⟩
1 ∷ ♯ ones
≈⟨ refl ∷ ♯ ones≈ones′₁ ⟩
1 ∷ ♯ ones′
≈⟨ refl ∷ ♯ ≈-refl ones′ ⟩
1 ∷ ♯ map suc zeros
≈⟨ refl ∷ ♯ ≈-refl ones′ ⟩
map suc (0 ∷ ♯ zeros)
≈⟨ refl ∷ ♯ ≈-refl ones′ ⟩
map suc zeros
≈⟨ ≈-refl ones′ ⟩
ones′ ∎
where open ≈-Reasoning-bad
module ≈-Reasoning where
infix 4 _≈P_ _≈W_
infixr 5 _∷_
infix 3 _∎
infixr 2 _≈⟨_⟩_
data _≈P_ {A : Set} : Stream A → Stream A → Set where
_∷_ : ∀ {x y xs ys} (x≡y : x ≡ y) →
(xs≈ys : ∞ (♭ xs ≈P ♭ ys)) → x ∷ xs ≈P y ∷ ys
_≈⟨_⟩_ : ∀ (xs : Stream A) {ys zs}
(xs≈ys : xs ≈P ys) → (ys≈zs : ys ≈P zs) → xs ≈P zs
_∎ : ∀ (xs : Stream A) → xs ≈P xs
data _≈W_ {A : Set} : Stream A → Stream A → Set where
_∷_ : ∀ {x y xs ys} (x≡y : x ≡ y)
(xs≈ys : ♭ xs ≈P ♭ ys) → x ∷ xs ≈W y ∷ ys
-- Completeness
completeP : {A : Set} {xs ys : Stream A} → xs ≈ ys → xs ≈P ys
completeP (x≡y ∷ xs≈ys) = x≡y ∷ ♯ (completeP (♭ xs≈ys))
-- Weak head normal forms
transW : {A : Set} {xs ys zs : Stream A} →
xs ≈W ys → ys ≈W zs → xs ≈W zs
transW {A} {x ∷ xs} (x≡y ∷ xs≈ys) (y≡z ∷ ys≈zs) =
trans x≡y y≡z ∷ (♭ xs ≈⟨ xs≈ys ⟩ ys≈zs)
reflW : {A : Set} (xs : Stream A) → xs ≈W xs
reflW (x ∷ xs) = refl ∷ (♭ xs ∎)
whnf : {A : Set} {xs ys : Stream A} → xs ≈P ys → xs ≈W ys
whnf {A} {x ∷ xs} {y ∷ ys} (x≡y ∷ xs≈ys) = x≡y ∷ ♭ xs≈ys
whnf (xs ≈⟨ xs≈ys ⟩ ys≈zs) = transW (whnf xs≈ys) (whnf ys≈zs)
whnf ((x ∷ xs) ∎) = refl ∷ (♭ xs ∎)
-- Soundness
mutual
soundP : {A : Set} {xs ys : Stream A} → xs ≈P ys → xs ≈ ys
soundP xs≈ys = soundW (whnf xs≈ys)
soundW : {A : Set} {xs ys : Stream A} → xs ≈W ys → xs ≈ ys
soundW (x≡y ∷ xs≈ys) = x≡y ∷ ♯ (soundP xs≈ys)
module ≈-Reasoning-test {A : Set} where
open ≈-Reasoning
ones≈ones′₁ : ones ≈P ones′
ones≈ones′₁ =
ones
≈⟨ refl ∷ ♯ (ones ∎) ⟩
1 ∷ ♯ ones
≈⟨ refl ∷ ♯ ones≈ones′₁ ⟩
1 ∷ ♯ ones′
≈⟨ refl ∷ ♯ (ones′ ∎) ⟩
1 ∷ ♯ map suc zeros
≈⟨ refl ∷ ♯ (ones′ ∎) ⟩
map suc (0 ∷ ♯ zeros)
≈⟨ refl ∷ ♯ (ones′ ∎) ⟩
map suc zeros
≈⟨ ones′ ∎ ⟩
ones′ ∎
--