-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscrapping_MOJ.py
314 lines (230 loc) · 9.49 KB
/
scrapping_MOJ.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import csv
from bs4 import BeautifulSoup
# reading files
with open("saved_urls.txt", "r") as file:
all_links = file.read().split("\n")
# List of links
links = all_links
workings_links = []
# Configure Chrome options
chrome_options = Options()
chrome_options.add_argument("--headless") # Run Chrome in headless mode (without GUI)
# Create a Chrome webdriver instance
driver = webdriver.Chrome(options=chrome_options)
# Open the output files
with open('output2.txt', 'w', encoding='utf-8') as txt_file, open('output2.csv', 'w', encoding='utf-8', newline='') as csv_file:
txt_writer = txt_file
csv_writer = csv.writer(csv_file)
# Loop through the links and process each page
for link in links:
driver.get(link)
# Check if the page contains the specified text
if 'الصفحة المطلوبة غير موجودة' in driver.page_source:
print(f"Skipping link: {link}")
continue
# Get the page source HTML
page_source = driver.page_source
workings_links.append(link)
# Create BeautifulSoup object from the page source
soup = BeautifulSoup(page_source, 'html.parser')
# Find all <p> elements with class "justfy line-hi"
paragraphs = soup.find_all('p', class_='justfy line-hi')
# Save the text in .txt and .csv files
for paragraph in paragraphs:
text = paragraph.get_text(strip=True)
txt_writer.write(text.replace("\n", " ") + '\n')
csv_writer.writerow([text.replace("\n", " ")])
print(f"Link processed: {link}")
# Close the Chrome webdriver
driver.quit()
# saving working links
with open("working_links.txt","w") as file:
file.write("\n".join(workings_links))
# some stats
### number of words in the file and characters
# with open('output2.txt', 'r', encoding="utf-8") as file:
# contents = file.read()
# words = contents.split()
# num_words = len(words)
# num_chars = len(contents)
# unique_words = set(words)
# num_unique_words = len(unique_words)
# print("Number of words:", num_words)
# print("Number of characters:", num_chars)
# print("Number of unique words:", num_unique_words)
### graph for 50 words in all cases
# import matplotlib.pyplot as plt
# from collections import Counter
# import arabic_reshaper
# from bidi.algorithm import get_display
# with open('output2.txt', 'r', encoding="utf-8") as file:
# contents = file.read()
# words = contents.split()
# word_count = Counter(words)
# total_words = len(words)
# word_percentages = {word: count/total_words*100 for word, count in word_count.items()}
# top_words = dict(sorted(word_percentages.items(), key=lambda item: item[1], reverse=True)[:50])
# plt.bar([get_display(arabic_reshaper.reshape(word)) for word in top_words.keys()], top_words.values())
# plt.xticks(rotation=90)
# plt.xlabel('Words')
# plt.ylabel('Percentage')
# plt.title('Top 50 Words in Text File')
# plt.show()
### clean the dataset then most 50 frequently
# import nltk
# from nltk.corpus import stopwords
# from nltk.tokenize import word_tokenize
# import re
# from collections import Counter
# import matplotlib.pyplot as plt
# import arabic_reshaper
# from bidi.algorithm import get_display
# # Download the Arabic stopwords corpus
# nltk.download('stopwords')
# # Read the text file
# with open('output2.txt', 'r', encoding='utf-8') as file:
# text = file.read()
# # Remove symbols and unimportant characters
# text = re.sub(r'[^\w\s]', '', text)
# text = re.sub(r'\d+', '', text)
# text = re.sub(r'\s+', ' ', text)
# # Tokenize the text into words
# words = word_tokenize(text)
# # Remove the stopwords
# stop_words = set(stopwords.words('arabic'))
# filtered_words = [word for word in words if word not in stop_words]
# # Count the frequency of each word
# word_counts = Counter(filtered_words)
# # Get the 30 most common words
# top_words = word_counts.most_common(30)
# # Plot a bar chart of the top 30 words
# #get_display(arabic_reshaper.reshape(word[0])
# plt.bar([get_display(arabic_reshaper.reshape(word[0])) for word in top_words], [word[1] for word in top_words])
# plt.xticks(rotation=90)
# plt.show()
### number of collected cases
# with open('output2.txt', 'r', encoding="utf-8") as file:
# contents = file.read()
# paragraphs = contents.split("\n")
# print("number of cases collected: ",len(paragraphs))
### saparated cases
# import pandas as pd
# df = pd.read_csv("output_modified.csv",encoding="utf-8")
# from selenium import webdriver
# from selenium.webdriver.chrome.options import Options
# import csv
# from bs4 import BeautifulSoup
# # reading files
# with open("saved_urls.txt", "r") as file:
# all_links = file.read().split("\n")
# # List of links
# links = all_links
# workings_links = []
# # Configure Chrome options
# chrome_options = Options()
# chrome_options.add_argument("--headless") # Run Chrome in headless mode (without GUI)
# # Create a Chrome webdriver instance
# driver = webdriver.Chrome(options=chrome_options)
# # Open the output files
# with open('output2.txt', 'w', encoding='utf-8') as txt_file, open('output2.csv', 'w', encoding='utf-8', newline='') as csv_file:
# txt_writer = txt_file
# csv_writer = csv.writer(csv_file)
# # Loop through the links and process each page
# for link in links:
# driver.get(link)
# # Check if the page contains the specified text
# if 'الصفحة المطلوبة غير موجودة' in driver.page_source:
# print(f"Skipping link: {link}")
# continue
# # Get the page source HTML
# page_source = driver.page_source
# workings_links.append(link)
# # Create BeautifulSoup object from the page source
# soup = BeautifulSoup(page_source, 'html.parser')
# # Find all <p> elements with class "justfy line-hi"
# paragraphs = soup.find_all('p', class_='justfy line-hi')
# # Save the text in .txt and .csv files
# for paragraph in paragraphs:
# text = paragraph.get_text(strip=True)
# txt_writer.write(text.replace("\n", " ") + '\n')
# csv_writer.writerow([text.replace("\n", " ")])
# print(f"Link processed: {link}")
# # Close the Chrome webdriver
# driver.quit()
# # saving working links
# with open("working_links.txt","w") as file:
# file.write("\n".join(workings_links))
# some stats
### number of words in the file and characters
# with open('output2.txt', 'r', encoding="utf-8") as file:
# contents = file.read()
# words = contents.split()
# num_words = len(words)
# num_chars = len(contents)
# unique_words = set(words)
# num_unique_words = len(unique_words)
# print("Number of words:", num_words)
# print("Number of characters:", num_chars)
# print("Number of unique words:", num_unique_words)
### graph for 50 words in all cases
# import matplotlib.pyplot as plt
# from collections import Counter
# import arabic_reshaper
# from bidi.algorithm import get_display
# with open('output2.txt', 'r', encoding="utf-8") as file:
# contents = file.read()
# words = contents.split()
# word_count = Counter(words)
# total_words = len(words)
# word_percentages = {word: count/total_words*100 for word, count in word_count.items()}
# top_words = dict(sorted(word_percentages.items(), key=lambda item: item[1], reverse=True)[:50])
# plt.bar([get_display(arabic_reshaper.reshape(word)) for word in top_words.keys()], top_words.values())
# plt.xticks(rotation=90)
# plt.xlabel('Words')
# plt.ylabel('Percentage')
# plt.title('Top 50 Words in Text File')
# plt.show()
### clean the dataset then most 50 frequently
# import nltk
# from nltk.corpus import stopwords
# from nltk.tokenize import word_tokenize
# import re
# from collections import Counter
# import matplotlib.pyplot as plt
# import arabic_reshaper
# from bidi.algorithm import get_display
# # Download the Arabic stopwords corpus
# nltk.download('stopwords')
# # Read the text file
# with open('output2.txt', 'r', encoding='utf-8') as file:
# text = file.read()
# # Remove symbols and unimportant characters
# text = re.sub(r'[^\w\s]', '', text)
# text = re.sub(r'\d+', '', text)
# text = re.sub(r'\s+', ' ', text)
# # Tokenize the text into words
# words = word_tokenize(text)
# # Remove the stopwords
# stop_words = set(stopwords.words('arabic'))
# filtered_words = [word for word in words if word not in stop_words]
# # Count the frequency of each word
# word_counts = Counter(filtered_words)
# # Get the 30 most common words
# top_words = word_counts.most_common(30)
# # Plot a bar chart of the top 30 words
# #get_display(arabic_reshaper.reshape(word[0])
# plt.bar([get_display(arabic_reshaper.reshape(word[0])) for word in top_words], [word[1] for word in top_words])
# plt.xticks(rotation=90)
# plt.show()
### number of collected cases
# with open('output2.txt', 'r', encoding="utf-8") as file:
# contents = file.read()
# paragraphs = contents.split("\n")
# print("number of cases collected: ",len(paragraphs))
### saparated cases
# import pandas as pd
# df = pd.read_csv("output_modified.csv",encoding="utf-8")
# print(df.info())
# print(df.info())