forked from ryo-simon-mf/DDA-PoseNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo_util.js
executable file
·181 lines (153 loc) · 5.15 KB
/
demo_util.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/**
* @license
* Copyright 2018 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
import * as posenet from '@tensorflow-models/posenet';
import * as tf from '@tensorflow/tfjs';
const color = 'aqua';
const boundingBoxColor = 'red';
const lineWidth = 2;
function toTuple({y, x}) {
return [y, x];
}
export function drawPoint(ctx, y, x, r, color) {
ctx.beginPath();
ctx.arc(x, y, r, 0, 2 * Math.PI);
ctx.fillStyle = color;
ctx.fill();
}
/**
* Draws a line on a canvas, i.e. a joint
*/
export function drawSegment([ay, ax], [by, bx], color, scale, ctx) {
ctx.beginPath();
ctx.moveTo(ax * scale, ay * scale);
ctx.lineTo(bx * scale, by * scale);
ctx.lineWidth = lineWidth;
ctx.strokeStyle = color;
ctx.stroke();
}
/**
* Draws a pose skeleton by looking up all adjacent keypoints/joints
*/
export function drawSkeleton(keypoints, minConfidence, ctx, scale = 1) {
const adjacentKeyPoints =
posenet.getAdjacentKeyPoints(keypoints, minConfidence);
adjacentKeyPoints.forEach((keypoints) => {
drawSegment(
toTuple(keypoints[0].position), toTuple(keypoints[1].position), color,
scale, ctx);
});
}
/**
* Draw pose keypoints onto a canvas
*/
export function drawKeypoints(keypoints, minConfidence, ctx, scale = 1) {
for (let i = 0; i < keypoints.length; i++) {
const keypoint = keypoints[i];
if (keypoint.score < minConfidence) {
continue;
}
const {y, x} = keypoint.position;
drawPoint(ctx, y * scale, x * scale, 3, color);
}
}
/**
* Draw the bounding box of a pose. For example, for a whole person standing
* in an image, the bounding box will begin at the nose and extend to one of
* ankles
*/
export function drawBoundingBox(keypoints, ctx) {
const boundingBox = posenet.getBoundingBox(keypoints);
ctx.rect(
boundingBox.minX, boundingBox.minY, boundingBox.maxX - boundingBox.minX,
boundingBox.maxY - boundingBox.minY);
ctx.strokeStyle = boundingBoxColor;
ctx.stroke();
}
/**
* Converts an arary of pixel data into an ImageData object
*/
export async function renderToCanvas(a, ctx) {
const [height, width] = a.shape;
const imageData = new ImageData(width, height);
const data = await a.data();
for (let i = 0; i < height * width; ++i) {
const j = i * 4;
const k = i * 3;
imageData.data[j + 0] = data[k + 0];
imageData.data[j + 1] = data[k + 1];
imageData.data[j + 2] = data[k + 2];
imageData.data[j + 3] = 255;
}
ctx.putImageData(imageData, 0, 0);
}
/**
* Draw an image on a canvas
*/
export function renderImageToCanvas(image, size, canvas) {
canvas.width = size[0];
canvas.height = size[1];
const ctx = canvas.getContext('2d');
ctx.drawImage(image, 0, 0);
}
/**
* Draw heatmap values, one of the model outputs, on to the canvas
* Read our blog post for a description of PoseNet's heatmap outputs
* https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
*/
export function drawHeatMapValues(heatMapValues, outputStride, canvas) {
const ctx = canvas.getContext('2d');
const radius = 5;
const scaledValues = heatMapValues.mul(tf.scalar(outputStride, 'int32'));
drawPoints(ctx, scaledValues, radius, color);
}
/**
* Used by the drawHeatMapValues method to draw heatmap points on to
* the canvas
*/
function drawPoints(ctx, points, radius, color) {
const data = points.buffer().values;
for (let i = 0; i < data.length; i += 2) {
const pointY = data[i];
const pointX = data[i + 1];
if (pointX !== 0 && pointY !== 0) {
ctx.beginPath();
ctx.arc(pointX, pointY, radius, 0, 2 * Math.PI);
ctx.fillStyle = color;
ctx.fill();
}
}
}
/**
* Draw offset vector values, one of the model outputs, on to the canvas
* Read our blog post for a description of PoseNet's offset vector outputs
* https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
*/
export function drawOffsetVectors(
heatMapValues, offsets, outputStride, scale = 1, ctx) {
const offsetPoints =
posenet.singlePose.getOffsetPoints(heatMapValues, outputStride, offsets);
const heatmapData = heatMapValues.buffer().values;
const offsetPointsData = offsetPoints.buffer().values;
for (let i = 0; i < heatmapData.length; i += 2) {
const heatmapY = heatmapData[i] * outputStride;
const heatmapX = heatmapData[i + 1] * outputStride;
const offsetPointY = offsetPointsData[i];
const offsetPointX = offsetPointsData[i + 1];
drawSegment(
[heatmapY, heatmapX], [offsetPointY, offsetPointX], color, scale, ctx);
}
}