-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHandTrackingModule.py
55 lines (39 loc) · 1.76 KB
/
HandTrackingModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import cv2
import mediapipe as mp
class handDetector():
def __init__(self, mode =False, maxHands=2, model_complexity=1, detectionConfidence=0.5, trackingConfidence=0.5):
# static_image_mode = False,
# max_num_hands = 2,
# model_complexity = 1,
# min_detection_confidence = 0.5,
# min_tracking_confidence = 0.5)
self.mode = mode
self.maxHands = maxHands
self.modelComplexity = model_complexity
self.detectionConfidence = detectionConfidence
self.trackingConfidence = trackingConfidence
self.mpHands = mp.solutions.hands
self.hands = self.mpHands.Hands(self.mode, self.maxHands, self.modelComplexity, self.detectionConfidence,
self.trackingConfidence)
self.mpDraw = mp.solutions.drawing_utils
def findHand(self, img, draw=True):
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.results = self.hands.process(imgRGB)
# print(results.multi_hand_landmarks)
if self.results.multi_hand_landmarks:
for handsLms in self.results.multi_hand_landmarks:
if draw:
self.mpDraw.draw_landmarks(img, handsLms, self.mpHands.HAND_CONNECTIONS)
return img
def findPosition(self, img, HandNo=0, draw=True):
lmList = []
if self.results.multi_hand_landmarks:
myHand = self.results.multi_hand_landmarks[HandNo]
for id, lm in enumerate(myHand.landmark):
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h)
lmList.append([id, cx, cy])
if draw:
cv2.circle(img, (cx, cy), 15, (255, 0, 255), cv2.FILLED)
return lmList
# the dump code