-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvad.py
203 lines (171 loc) · 8.84 KB
/
vad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#!/usr/bin/env python3
# Copyright (2021-) Shahruk Hossain <[email protected]>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import tensorflow as tf
from tensorflow.keras.layers import Layer
class VAD(Layer):
"""
This layer mimics kaldi's `compute-vad` and `select-voiced-frames` binaries
by applying a simple energy based voice activiy detection filter on input
feature frames.
The input to this layer is expected to be a 3D tensor (batch, frames, feat)
containing the output of the `MFCC` layer. The first coefficient along the
feat axis should contain the log-energy of each frame (`use_energy=True` in
the MFCC layer).
The layer can be configured to return either;
- Frame indexes corresponding to frames with voice activity which can be
used with `tf.gather_nd` to gather the active frames into a single
tensor (return_indexes=True). This is the default.
- Binary masks containing 1s and 0s corresponding to frames with voice
activity and those without respectively (return_indexes=False).
"""
def __init__(self,
energy_mean_scale: float = 0.5,
energy_threshold: float = 5,
frames_context: int = 0,
proportion_threshold: float = 0.6,
return_indexes=True,
energy_coeff: int = 0,
name: str = None,
**kwargs):
"""
Initializes VAD layer with given configuration.
Parameters
----------
energy_mean_scale : float, optional
If this is set to `s`, to get the actual threshold we let `m` be
the mean log-energy of the file, and use `s*m + vad-energy-threshold`.
By default, 0.5.
energy_threshold : float, optional
Constant term in energy threshold for VAD (also see energy_mean_scale.
By default 5.
frames_context : int, optional
Number of frames of context on each side of central frame, in window for
which energy is monitored. By default 0.
proportion_threshold : float, optional
Parameter controlling the proportion of frames within the window that need
to have more energy than the threshold. By default 0.6.
return_indexes : bool, optional
If true, the output of this layer will be a tensor containing indexes of
active frames for each frame sequence in the batch. Otherwise, the layer
outputs binary masks containing 1s and 0s corresponding to active and
inactive frames respectively. By default, True.
energy_coeff : int, optional
The coefficient in each frame that should be used as the value on which
the threshold will be applied. By default 0 (the first coefficient).
name : str, optional
Name of the given layer. Is auto set if set to None.
By default None.
Raises
------
ValueError
If energy_mean_scale < 0.
If frames_context < 0.
If proportion_threshold not between 0 and 1 (exclusive).
"""
super(VAD, self).__init__(trainable=False, name=name, **kwargs)
if energy_mean_scale < 0:
raise ValueError("`energy_mean_scale` must be >= 0")
if frames_context < 0:
raise ValueError("`frames_context` must be >= 0")
if proportion_threshold <= 0 or proportion_threshold >= 1:
raise ValueError("`proportion_threshold` must be between 0 and 1 (exlcusive)")
self.energyThreshold = tf.constant(energy_threshold, dtype=self.dtype)
self.energyMeanScale = tf.constant(energy_mean_scale, dtype=self.dtype)
self.propThreshold = tf.constant(proportion_threshold, dtype=self.dtype)
self.returnIndexes = return_indexes
self.useEnergyMean = energy_mean_scale > 0
self.framesContext = frames_context
self.windowSize = self.framesContext * 2 + 1
# Kernel will be convolved with thresholded log energies to give the
# count of frames within the kernel window having energy greater than
# the threshold.
self.kernel = None
if self.windowSize > 1:
# kernel shape = (window width, input dim, output dim)
self.kernel = tf.reshape(
tf.constant([1.0 for i in range(self.windowSize)], dtype=self.dtype),
[self.windowSize, 1, 1],
)
# When computing frame prorportions, Kaldi divides by "valid" number
# of frames, i.e. that fit completely within the kernel window at
# the edges. To acheive the same effect, we precompute these updates
# to the `windowSizes` tensor here and apply them later in `call()`.
N = self.windowSize
self.windowSizesAtEdges = tf.constant(
list(range(N // 2 + 1, N, 1)) + # left edge = 3, 4 for N = 5
list(range(N - 1, N // 2, -1)), # right edge = 4, 3 for N = 5
)
# Indexes will be added to number of frames and then modulo-ed to
# get all positive indexes.
self.windowEdgeIndexes = tf.expand_dims(tf.constant(
list(range(0, N // 2)) + # left edge indexes = 0, 1 for N = 5
list(range(-N // 2 + 1, 0)), # right edge indexes = -1, -2 for N = 5
dtype=tf.int32), 1)
# Frames are expected to be the second to last axis of the input; The
# 0th coefficient in each frame is expected to contain the log energy of
# the frame by default.
self.energyCoef = energy_coeff
self.frameAxis = -2
def get_config(self) -> dict:
config = super(VAD, self).get_config()
config.update({
"energy_mean_scale": self.energyMeanScale.numpy(),
"energy_threshold": self.energyThreshold.numpy(),
"frames_context": self.framesContext,
"proportion_threshold": self.propThreshold.numpy(),
"return_indexes": self.returnIndexes,
"energy_coeff": self.energyCoef,
})
return config
def call(self, inputs):
logEnergies = inputs[..., self.energyCoef:self.energyCoef + 1]
numFrames = tf.shape(logEnergies)[self.frameAxis]
# Computing energy threshold and frame level decisions.
if self.useEnergyMean:
meanEnergy = tf.reduce_mean(logEnergies, axis=self.frameAxis, keepdims=True)
energyThreshold = self.energyThreshold + self.energyMeanScale * meanEnergy
else:
energyThreshold = self.energyThreshold
frameDecisions = tf.greater(logEnergies, energyThreshold)
# If window size is 1, we return frame level decisions.
if self.windowSize == 1:
if self.returnIndexes:
return tf.where(tf.squeeze(frameDecisions, axis=-1))
else:
return tf.cast(frameDecisions, inputs.dtype)
# Getting count of frames within each context window having energies
# greater than the threshold.
frameDecisions = tf.cast(frameDecisions, self.kernel.dtype)
counts = tf.nn.conv1d(
frameDecisions, self.kernel, stride=1, padding="SAME", data_format="NWC",
)
# Dividing counts by "valid" window size at each frame to get
# proportions of frames exceeding the proporition threshold for the
# context windows.
windowSizes = self.windowSize * tf.ones((numFrames,), dtype=self.dtype)
# Updating window sizes at the edges to be equal to actual number of
# contributing frames, i.e. sans padding.
edgeSizes = tf.cast(self.windowSizesAtEdges, windowSizes.dtype)
edgeIndexes = tf.math.floormod(self.windowEdgeIndexes + numFrames, numFrames)
windowSizes = tf.tensor_scatter_nd_update(windowSizes, edgeIndexes, edgeSizes)
# Adding batch and feat dimension so that it will be broadcasted when dividing.
windowSizes = tf.reshape(windowSizes, (1, numFrames, 1))
proportions = tf.divide(counts, windowSizes)
frameDecisions = tf.greater_equal(proportions, self.propThreshold)
if self.returnIndexes:
return tf.where(tf.squeeze(frameDecisions, axis=-1))
else:
return tf.cast(frameDecisions, inputs.dtype)