forked from ConesaLab/tappAS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DataDPA.java
830 lines (766 loc) · 40.4 KB
/
DataDPA.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package tappas;
import javafx.beans.property.SimpleDoubleProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.property.SimpleStringProperty;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import tappas.DataAnnotation.TransData;
import tappas.DataApp.DataType;
import tappas.DataApp.SelectionDataResults;
import tappas.DataDIU.DSType;
import java.io.*;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import static tappas.DataAnnotation.STRUCTURAL_SOURCE;
/**
*
* @author Pedro Salguero - [email protected]
*/
public class DataDPA extends AppObject {
public static final String SHORT_SUFFIX = "_Short";
public static final String LONG_SUFFIX = "_Long";
public static final String DPA_RESULTS = "result.tsv";
public static final String DPA_RESULTS_SUMMARY = "result_differentialPolyA_summary.tsv";
public static final String DPA_DIFFPOLYAIDMAP_NAME = "diff_PolyA_id_map";
public static final String DPA_DIFFPOLYAMATRIX_NAME = "diff_PolyA_matrix";
public static final String DPA_DIFFPOLYAMEANMATRIX_NAME = "diff_PolyA_matrix_mean";
public static final String DPA_DIFFPOLYAMATRIXRAW_NAME = "diff_PolyA_matrix_raw";
public static final String DPA_DIFFPOLYAIDDATA_NAME = "diff_PolyA_id_data";
// transcripts with TransData
private HashMap<String, TransData> hmTransData = new HashMap<>();
public String getDPAFolder() { return Paths.get(project.data.getProjectDataFolder(), DataProject.FOLDER_DPA).toString(); }
public String getDPAParamsFilepath() { return Paths.get(getDPAFolder(), DataApp.PRM_DPA).toString(); }
public String getDPAGeneResultsFilepath() { return Paths.get(getDPAFolder(), DPA_RESULTS).toString(); }
public String getDPAResultsSummaryFilepath() { return Paths.get(getDPAFolder(), DPA_RESULTS_SUMMARY).toString(); }
public String getDPALogFilepath() { return Paths.get(getDPAFolder(), DataApp.LOG_NAME).toString(); }
public String getDPAVennDiagFilepath(DataType dataType) { return Paths.get(getDPAFolder(), DataApp.VENNDIAG_NAME + DataApp.PNG_EXT).toString(); }
public String getDPAClusterImageFilepath(String grp, int cluster) { return Paths.get(getDPAFolder(), DataApp.CLUSTER_NAME + grp + "." + cluster + DataApp.PNG_EXT).toString(); }
public String getDPAClusterImagePrefix() { return DataApp.CLUSTER_NAME + "_"; }
public String getDPAClusterMembersFilepath(String grp) { return Paths.get(getDPAFolder(), DataApp.CLUSTER_NAME + grp + DataApp.TSV_EXT).toString(); }
public String getDPADiffPolyAIdMapFilepath() { return Paths.get(project.data.getProjectDataFolder(), DPA_DIFFPOLYAIDMAP_NAME + DataApp.TSV_EXT).toString(); }
public String getDPADiffPolyAMatrixFilepath() { return Paths.get(project.data.getProjectDataFolder(), DPA_DIFFPOLYAMATRIX_NAME + DataApp.TSV_EXT).toString(); }
public String getDPADiffPolyAMeanMatrixFilepath() { return Paths.get(project.data.getProjectDataFolder(), DPA_DIFFPOLYAMEANMATRIX_NAME + DataApp.TSV_EXT).toString(); }
public String getDPADiffPolyAMatrixRawFilepath() { return Paths.get(project.data.getProjectDataFolder(), DPA_DIFFPOLYAMATRIXRAW_NAME + DataApp.TSV_EXT).toString(); }
public String getDPADiffPolyAIdDataFilepath() { return Paths.get(project.data.getProjectDataFolder(), DPA_DIFFPOLYAIDDATA_NAME + DataApp.TSV_EXT).toString(); }
public DataDPA(Project project) {
super(project, null);
}
public void initialize() {
clearData();
}
public boolean hasDPAData() { return (Files.exists(Paths.get(getDPAGeneResultsFilepath()))); }
public boolean hasDPASummaryData() { return (Files.exists(Paths.get(getDPAResultsSummaryFilepath()))); }
public void clearData() {}
public DlgDPAnalysis.Params getDPAParams() {
return DlgDPAnalysis.Params.load(getDPAParamsFilepath(), project);
}
public void clearDataDPA(boolean rmvPrm) {
clearData();
removeAllDPAResultFiles(rmvPrm);
}
public void removeAllDPAResultFiles(boolean rmvPrms) {
Utils.removeAllFolderFiles(Paths.get(project.data.getProjectDataFolder(), DataProject.FOLDER_DPA), rmvPrms);
}
public boolean genDPAInputFiles(DlgDPAnalysis.Params dpaParams) {
boolean result = false;
// make sure expression factors is available
if(!Files.exists(Paths.get(project.data.getExpFactorsFilepath())))
project.data.copyExpFactorsFile(project.data.getExpFactorsFilepath());
// get expression data
HashMap<String, double[]> hmTransExp = new HashMap<>();
DataInputMatrix.ExpMatrixData ed = project.data.getExpressionData(DataType.TRANS, new HashMap<>());
for(DataInputMatrix.ExpMatrixArray em : ed.data)
hmTransExp.put(em.getTranscript(), em.daSamples);
String[] names = project.data.getGroupNames();
// create structural file if it has not created yet
if(!Files.exists(Paths.get(project.data.getStructuralInfoFilePath()))){
DbAnnotation db = new DbAnnotation(project);
db.initialize();
if(db.openDB(project.data.getAnnotationDBFilepath())){
if(db.getStructureFile(project.data.getProjectDataFolder(), db.getTranscriptGenomicPosition())){
app.logInfo("File created succesfully");
}
}
db.close();
}
//Get genomic Position to PolyA reading the structural information file
if(!Files.exists(Paths.get(project.data.getStructuralInfoFilePath()))){
}
HashMap<String, String> genomicPos = Utils.loadGenomicPositions(project.data.getStructuralInfoFilePath(),4,true);
// get genes with diversity in PolyA
HashMap<String, Object> hm = new HashMap<>();
hm.put(dpaParams.getFeature(),null);
boolean varyingflg = false;
boolean multipleIso = false;
DbProject.TransDataResults trd = project.data.loadTransData();
hmTransData = trd.hmTransData;
int length = dpaParams.lengthValue;
List<String> lstDPA = new ArrayList<>();
lstDPA.add("Gene\tTrans\tGenPos\tStrand");
//gene, trans, genomicPos
HashMap<String, HashMap<String, Object>> hmTGGeneTrans = project.data.getResultsGeneTrans();
HashMap<String, Object> hmNMD = project.data.getTransWithAnnot("NMD");
for(String gene : hmTGGeneTrans.keySet()) {
//at least 2 isoforms
HashMap<String, Object> hmTrans = hmTGGeneTrans.get(gene);
HashMap<String, Object> hmTransFiltered = new HashMap<>();
for(String trans : hmTrans.keySet()){
if(project.data.isTransCoding(trans) && !hmNMD.containsKey(trans))
hmTransFiltered.put(trans, null);
}
varyingflg = !areAllGenePASSimilar(gene, hmTransFiltered, genomicPos, length);
multipleIso = hmTransFiltered.size()>1;
if(varyingflg && multipleIso){
//if gene has diverse polyA order transcripts in short or long
for(String trans : hmTransFiltered.keySet()){
if(genomicPos.get(trans)!=null)
lstDPA.add(gene + "\t" + trans + "\t" + genomicPos.get(trans) + "\t" + project.data.getGeneStrand(gene));
}
}else{
continue;
}
}
// write a info file for RScript
if(!lstDPA.isEmpty()) {
result = writeFile(project.data.getProjectDataFolder()+"/DPA", lstDPA);
}
return result;
}
//Save info
private boolean writeFile(String folder, List<String> lstDPA) {
boolean result = false;
logger.logDebug("Writing DPA file...");
String fp = Paths.get(folder, DataProject.DPA_ShortLong).toString();
Writer writer = null;
try {
writer = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fp), "utf-8"));
for(String str_info : lstDPA){
System.out.println(str_info);
writer.write(str_info + "\n");
}
logger.logDebug("Annotation DPA file written.");
result = true;
} catch (IOException e) {
logger.logError("Annotation DPA file code exception: " + e.getMessage());
result = false;
} finally {
try { if(writer != null) writer.close();} catch (Exception e) { System.out.println("Writer close exception within exception" + e.getMessage()); }
}
return result;
}
// all transcripts must be coding or will return false even if all are non-coding
public boolean areAllGenePASSimilar(String gene, HashMap<String, Object> hm, HashMap<String, String> genomicPos, int length) {
boolean result = false;
//which is max position in genomic position? int is 2.147M!!!
long minPOS=Long.MAX_VALUE;
long maxPOS=0;
for(String trans : hm.keySet()) {
if(hmTransData.containsKey(trans)) {
if(genomicPos.containsKey(trans)){
long transPASPOS = Long.parseLong(genomicPos.get(trans));
if(transPASPOS > maxPOS)
maxPOS = transPASPOS;
if(transPASPOS < minPOS)
minPOS = transPASPOS;
}else{
continue;
}
}else {
System.out.println("WARN: No data available for transcript " + trans);
break;
}
}
//Similar is less than that length
if(maxPOS-minPOS<length){
result = true;
}
return result;
}
public ArrayList<String> getDPAGenes(DSType dsType, double sigValue) {
ArrayList<String> lstDS = new ArrayList<>();
ArrayList<DPAResultsData> lstResults = getDPAResultsData(sigValue);
lstResults.forEach((dsar) -> {
if(dsType.equals(DSType.DS) && dsar.ds)
lstDS.add(dsar.gene);
else if(dsType.equals(DSType.NOTDS) && !dsar.ds)
lstDS.add(dsar.gene);
else if(dsType.equals(DSType.ALL))
lstDS.add(dsar.gene);
});
return lstDS;
}
public HashMap<String, HashMap<String, Object>> getDPAGeneTransFilter(DSType dsType, double sigValue) {
HashMap<String, HashMap<String, Object>> hmGeneTrans = new HashMap<>();
ArrayList<String> lst = getDPAGenes(dsType, sigValue);
HashMap<String, HashMap<String, Object>> hmGT = project.data.getResultsGeneTrans();
for(String gene : lst) {
if(hmGT.containsKey(gene)) {
HashMap<String, Object> hm = new HashMap<>();
hmGeneTrans.put(gene, hm);
HashMap<String, Object> hmt = hmGT.get(gene);
hmt.keySet().forEach((trans) -> {
hm.put(trans, null);
});
}
}
return hmGeneTrans;
}
public ArrayList<DPAResultsData> getDPAResultsData(double sigValue) {
ArrayList<DPAResultsData> lstDS = new ArrayList<>();
DlgDPAnalysis.Params params = getDPAParams();
try {
HashMap<String, HashMap<String, Integer>> hmCluster = null;
if(project.data.isTimeCourseExpType())
hmCluster = getDPACluster();
HashMap<String, double[]> hmMeanExp = getDPAMeanExp();
HashMap<String, String> hmFavored = getDPAIdData();
String[] groupNames = project.data.getGroupNames();
int count = 0;
if(Files.exists(Paths.get(getDPAGeneResultsFilepath()))) {
List<String> lines = Files.readAllLines(Paths.get(getDPAGeneResultsFilepath()), StandardCharsets.UTF_8);
// if the results are from edgeR we get: gene pValue qValue podiumChange totalChange
// if the results are from DEXSeq we get: gene qValue podiumChange totalChange
// if the results are form maSigPro we get: gene qValue podiumChange podiumTime (in single)
String gene;
String[] fields;
double pValue, qValue, totalChange;
boolean podiumChange;
int lnum = 1;
int fldLength = -1;
for(String line : lines) {
if(lnum > 1) {
fields = line.split("\t");
if(fldLength == -1) {
fldLength = fields.length;
//Couse = 4/6, Single = 5, Multiple = 5
if(fldLength != 4 && fldLength != 5 && fldLength != 6) {
logger.logError("Invalid number of columns, " + fldLength + ", in DPA gene results data.");
break;
}
}
if(fields.length == fldLength) {
// R is sticking spaces between the tabs
for(int i = 0; i < fields.length; i++)
fields[i] = fields[i].trim();
int fldIdx = 0;
gene = fields[fldIdx++];
if(fldLength == 6)
pValue = Double.parseDouble(fields[fldIdx++]);
else
pValue = 0;
qValue = Double.parseDouble(fields[fldIdx++]);
// skipping favorC2 field, not used - remove from script results later!!!
if(fldLength == 6)
fldIdx++;
podiumChange = Boolean.valueOf(fields[fldIdx++]);
totalChange = (project.data.isTimeCourseExpType())? 0.0 : Double.parseDouble(fields[fldIdx++]);
String timePoints = (project.data.isTimeCourseExpType())? (fields[fldIdx++].equals(".")? "" : fields[fldIdx-1]) : "";
String favoredTimes = (project.data.isTimeCourseExpType())? (fields[fldIdx++].equals(".")? "" : fields[fldIdx-1]) : "";
String geneDescription = project.data.getGeneDescription(gene);
String favored = "N/A";
if(hmFavored.containsKey(gene))
favored = hmFavored.get(gene);
else if(project.data.isTimeCourseExpType() && !favoredTimes.equals(""))
favored = favoredTimes;
double[] LongMeanExp = null;
double[] ShortMeanExp = null;
if(hmMeanExp.containsKey(gene + LONG_SUFFIX))
LongMeanExp = hmMeanExp.get(gene + LONG_SUFFIX);
if(hmMeanExp.containsKey(gene + SHORT_SUFFIX))
ShortMeanExp = hmMeanExp.get(gene + SHORT_SUFFIX);
double[] LongerConditionValues = new double[LongMeanExp.length];
for(int i=0; i<LongerConditionValues.length; i++){
if(ShortMeanExp[i]!=0){
LongerConditionValues[i]=LongMeanExp[i]/(ShortMeanExp[i]+LongMeanExp[i]);
}else{
LongerConditionValues[i]=0.0;
}
}
int[] clus = new int[groupNames.length];
boolean useCluster = false;
if(project.data.isTimeCourseExpType()){
useCluster = true;
for(int k=0; k<groupNames.length; k++){
if(hmCluster.get(groupNames[k]).containsKey(gene)){
clus[k]=hmCluster.get(groupNames[k]).get(gene);
count++;
}else{
clus[k]=0;
}
}
}
boolean timeSeries = project.data.isTimeCourseExpType();
lstDS.add(new DPAResultsData(params.method, gene, geneDescription, pValue, qValue, favored, LongMeanExp, ShortMeanExp, LongerConditionValues, podiumChange, timePoints, favoredTimes, totalChange, qValue < sigValue, groupNames, useCluster, clus, timeSeries));
}
else {
logger.logError("Invalid line, " + lnum + ", in DPA results data.");
break;
}
}
lnum++;
}
}
System.out.println(count);
}
catch (Exception e) {
logger.logError("Unable to load DPA results data: " + e.getMessage());
}
logger.logDebug("Returned " + lstDS.size() + " DPA result entries");
return lstDS;
}
public HashMap<String, String> getDPAIdData() {
HashMap<String, String> hmData = new HashMap<>();
try {
if(Files.exists(Paths.get(getDPADiffPolyAIdDataFilepath()))) {
List<String> lines = Files.readAllLines(Paths.get(getDPADiffPolyAIdDataFilepath()), StandardCharsets.UTF_8);
// get id and favored
String[] fields;
int lnum = 1;
for(String line : lines) {
if(!line.isEmpty() && !line.subSequence(0, 1).equals("#")) {
fields = line.split("\t");
if(fields.length == 2)
hmData.put(fields[0], fields[1]);
else {
logger.logError("Invalid number of columns, " + fields.length + ", in DPA featureId data.");
break;
}
}
lnum++;
}
}
}
catch (Exception e) {
logger.logError("Unable to load FeatureId data: " + e.getMessage());
}
return hmData;
}
public HashMap<String, double[]> getDPAMeanExp() {
HashMap<String, double[]> hmData = new HashMap<>();
try {
if(Files.exists(Paths.get(getDPADiffPolyAMeanMatrixFilepath()))) {
List<String> lines = Files.readAllLines(Paths.get(getDPADiffPolyAMeanMatrixFilepath()), StandardCharsets.UTF_8);
// get mean expression matrix
String[] fields;
int length = -1;
int lnum = 1;
for(String line : lines) {
if(!line.isEmpty() && !line.subSequence(0, 1).equals("#")) {
fields = line.split("\t");
if(length == -1)
length = fields.length;
if(fields.length == length) {
int cols = length - 1;
double[] means = new double[cols];
for(int i = 0; i < cols; i++)
means[i] = Double.parseDouble(fields[i+1]);
hmData.put(fields[0], means);
}
else {
logger.logError("Invalid number of columns in line " + lnum + ", " + fields.length + ", in DPA mean expression matrix file.");
break;
}
}
lnum++;
}
}
}
catch (Exception e) {
logger.logError("Unable to load DPA mean expression matrix: " + e.getMessage());
}
return hmData;
}
//Group - Gene - Cluster
public HashMap<String, HashMap<String, Integer>> getDPACluster() {
HashMap<String, HashMap<String, Integer>> hmData = new HashMap<>();
String[] names = project.data.getGroupNames();
try {
for(int i=0; i<names.length; i++){
HashMap<String, Integer> hmClusters = new HashMap<>();
if(Files.exists(Paths.get(getDPAClusterMembersFilepath(names[i])))) {
List<String> lines = Files.readAllLines(Paths.get(getDPAClusterMembersFilepath(names[i])), StandardCharsets.UTF_8);
// get cluster info
String[] fields;
int length = 2; //gene and cluster
int lnum = 1; // 1st line not count
for(String line : lines) {
if(!line.isEmpty() && lnum>1) {
fields = line.split("\t");
if(fields.length == length) {
hmClusters.put(fields[0], Integer.parseInt(fields[1]));
}
else {
logger.logError("Invalid number of columns in line " + lnum + ", " + fields.length + ", in DPA cluster file.");
break;
}
}
lnum++;
}
}
hmData.put(names[i], hmClusters);
}
}
catch (Exception e) {
logger.logError("Unable to load DPA cluster file: " + e.getMessage());
}
return hmData;
}
public ObservableList<DPASelectionResults> getDPASelectionResults(double sigValue, boolean getGeneData) {
ObservableList<DPASelectionResults> lstResults = FXCollections.observableArrayList();
ArrayList<DPAResultsData> lstDS = getDPAResultsData(sigValue);
for(DPAResultsData dsrd : lstDS)
lstResults.add(new DPASelectionResults(false, dsrd));
if(getGeneData) {
String gene;
HashMap<String, double[]> hmMEL = project.data.getMeanExpressionLevelsHM(DataType.GENE, project.data.getResultsTrans());
for(DPASelectionResults dr : lstResults) {
gene = dr.getGene();
dr.chromo = new SimpleStringProperty(project.data.getGeneChromo(gene));
dr.strand = new SimpleStringProperty(project.data.getGeneStrand(gene));
dr.isoforms = new SimpleIntegerProperty(project.data.getGeneTransCount(gene));
dr.coding = new SimpleStringProperty(project.data.isGeneCoding(gene)? "YES" : "NO");
if(!hmMEL.isEmpty()) {
//boolean fnd = false;
if(hmMEL.containsKey(gene)) {
double[] conds = hmMEL.get(gene);
dr.conditions = new SimpleDoubleProperty[conds.length];
//dr.distal = new SimpleDoubleProperty[conds.length];
//dr.proximal = new SimpleDoubleProperty[conds.length];
for(int i = 0; i < conds.length; i++){
dr.conditions[i] = new SimpleDoubleProperty(Double.parseDouble(String.format("%.02f", ((double)Math.round(conds[i]*100)/100.0))));
//dr.distal[i] = new SimpleDoubleProperty(Double.parseDouble(String.format("%.02f", (dr.getLongMeanExp(i)))));
//dr.proximal[i] = new SimpleDoubleProperty(Double.parseDouble(String.format("%.02f", (dr.getShortMeanExp(i)))));
}
}
else
logger.logWarning("Unable to find DPA expression values for gene '" + gene + "'");
}
}
}
return lstResults;
}
public boolean writeGeneFeatureData(HashMap<String, String> hmFavoredCondition, String header, String filepath) {
boolean result = false;
Writer writer = null;
try {
writer = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(filepath), "utf-8"));
writer.write(header + "\n");
for(String id : hmFavoredCondition.keySet()) {
writer.write(id + "\t" + hmFavoredCondition.get(id) + "\n");
}
result = true;
} catch (IOException e) {
logger.logError("Unable to save gene feature data file '" + filepath +"': " + e.getMessage());
} finally {
try {if(writer != null) writer.close();} catch (Exception e) { System.out.println("Writer close exception within exception: " + e.getMessage()); }
}
return result;
}
//
// Data Classes
//
// DPA data for genes
// the result values will change based on the method used for DPA - handled in DPAResults
enum DEXSeqValues { QValue, PodiumChange, TotalChange }
enum maSigProValues { PValue, RSQD, Cluster }
// meanExp should be just Exp at least when dealing within a single gene - check later and change name if needed?
public static class DPAResultsData {
public String gene;
public String geneDescription;
public String source;
public double pValue;
public double qValue;
public String favored;
private DlgDPAnalysis.Params.Method method;
public boolean clusters;
public int[] clus;
public ArrayList<DPAResultsData> lstResults;
public double[] LongMeanExp, ShortMeanExp, LongerConditionValues;
public boolean podiumChange;
public String LongerCondition;
public String podiumTimes;
public String favoredTimes;
public double totalChange;
public boolean ds;
//Expresion
public double distalExpressionA;
public double distalExpressionB;
public double proximalExpressionA;
public double proximalExpressionB;
//Mean expresion
public double distalMeanExpression;
public double proximalMeanExpression;
public DPAResultsData(DlgDPAnalysis.Params.Method method, String gene, String geneDescription,
double pValue, double qValue, String favored, double[] LongMeanExp, double[] ShortMeanExp, double[] LongerConditionValues, boolean podiumChange, String podiumTimes, String favoredTimes, double totalChange, boolean ds, String[] groupNames, boolean clusters, int[] clus, boolean timeSeries) {
this.method = method;
this.gene = gene;
this.geneDescription = geneDescription;
this.pValue = pValue;
this.qValue = qValue;
this.favored = favored;
this.LongMeanExp = LongMeanExp;
this.ShortMeanExp = ShortMeanExp;
this.LongerConditionValues = LongerConditionValues;
for(int i=0; i<LongMeanExp.length;i++){
if(!timeSeries){
if(i==0){
//first group
this.distalExpressionA = LongMeanExp[i];
this.proximalExpressionA = ShortMeanExp[i];
}else{
//second group
this.distalExpressionB = LongMeanExp[i];
this.proximalExpressionB = ShortMeanExp[i];
}
}
this.distalMeanExpression += LongMeanExp[i];
this.proximalMeanExpression += ShortMeanExp[i];
}
this.distalMeanExpression = distalMeanExpression/LongMeanExp.length;
this.proximalMeanExpression = proximalMeanExpression/LongMeanExp.length;
double max=0.0;
int ind = 0;
for(int i=0; i<LongerConditionValues.length;i++){
if(LongerConditionValues[i]>max){
max=LongerConditionValues[i];
ind=i;
}
}
if(!clusters){
//case-control
this.LongerCondition = groupNames[ind];
}else{
//time series
this.LongerCondition = "T"+String.valueOf(ind);
}
this.podiumChange = podiumChange;
this.podiumTimes = podiumTimes;
this.favoredTimes = favoredTimes;
this.totalChange = totalChange;
this.clusters = clusters;
this.clus = clus;
this.ds = ds;
this.source = STRUCTURAL_SOURCE;
lstResults = new ArrayList<>();
}
public void setDSFlag(double sigValue) {
if(qValue < sigValue)
ds = true;
else
ds = false;
}
public HashMap<String, DPAResultsData> getHMGene() {
HashMap<String, DPAResultsData> hm = new HashMap<>();
for(DPAResultsData rd : lstResults)
hm.put(rd.gene, rd);
return hm;
}
public ArrayList<DataApp.RankedListEntry> getRankedList() {
ArrayList<DataApp.RankedListEntry> lst = new ArrayList<>();
double value;
for(DPAResultsData rd : lstResults) {
if(rd.pValue!=0) // check this!!!
value = rd.pValue;
else
value = 1.0;
lst.add(new DataApp.RankedListEntry(rd.gene, value));
}
Collections.sort(lst);
return lst;
}
public DlgDPAnalysis.Params.Method getMethod() { return method; }
public void addResultData(DPAResultsData rd) { lstResults.add(rd); }
}
// specific analysis results
public static class DPASelectionResults extends SelectionDataResults implements Comparable<DPASelectionResults> {
static final double MAX_L2FC = 100.0;
public SimpleStringProperty chromo = null;
public SimpleStringProperty strand = null;
public SimpleIntegerProperty isoforms = null;
public SimpleStringProperty coding = null;
public SimpleStringProperty source = null;
public SimpleStringProperty favored = null;
// these values are normally based on the experimental group
// but in the case of single series time course
// they are based on time slots
public final SimpleDoubleProperty[] LongMeanExp;
public final SimpleDoubleProperty[] ShortMeanExp;
public final SimpleDoubleProperty[] LongerConditionValues;
public final SimpleDoubleProperty[] L2FC;
public SimpleDoubleProperty zero;
public SimpleDoubleProperty pValue = null;
public SimpleDoubleProperty qValue = null;
public SimpleDoubleProperty totalChange = null;
public SimpleStringProperty podiumChange = null;
public SimpleStringProperty podiumTimes = null;
public SimpleStringProperty favoredTimes = null;
public SimpleStringProperty LongerCondition = null;
public SimpleStringProperty ds = null;
//Expression Levels Two-Group Comparison
public SimpleDoubleProperty distalExpressionA = null;
public SimpleDoubleProperty distalExpressionB = null;
public SimpleDoubleProperty proximalExpressionA = null;
public SimpleDoubleProperty proximalExpressionB = null;
//MeanExpresion
public SimpleDoubleProperty distalMeanExpression = null;
public SimpleDoubleProperty proximalMeanExpression = null;
public final SimpleStringProperty[] clusterCmp;
public final SimpleStringProperty cluster;
public DPASelectionResults(boolean selected, DPAResultsData dsra) {
super(selected, DataType.GENE, dsra.gene, dsra.gene, dsra.geneDescription);
DecimalFormat formatter = new DecimalFormat("#.####E0");
this.favored = new SimpleStringProperty(dsra.favored);
if(dsra.LongMeanExp != null && dsra.ShortMeanExp != null && dsra.LongMeanExp.length == dsra.ShortMeanExp.length) {
// Long
int cnt = dsra.LongMeanExp.length;
this.LongMeanExp = new SimpleDoubleProperty[cnt];
this.distal = new SimpleDoubleProperty[cnt];
for(int i = 0; i < cnt; i++){
this.LongMeanExp[i] = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.LongMeanExp[i])));
//extends SelectionDataResults to get column explevel
this.distal[i] = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.LongMeanExp[i])));
}
// Short
cnt = dsra.ShortMeanExp.length;
this.ShortMeanExp = new SimpleDoubleProperty[cnt];
this.proximal = new SimpleDoubleProperty[cnt];
for(int i = 0; i < cnt; i++){
this.ShortMeanExp[i] = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.ShortMeanExp[i])));
//extends SelectionDataResults to get column explevel
this.proximal[i] = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.ShortMeanExp[i])));
}
// LongerConditionValues
cnt = dsra.LongerConditionValues.length;
this.LongerConditionValues = new SimpleDoubleProperty[cnt];
for(int i = 0; i < cnt; i++){
this.LongerConditionValues[i] = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.LongerConditionValues[i])));
}
// L2FC
this.L2FC = new SimpleDoubleProperty[cnt];
for(int i = 0; i < cnt; i++) {
// all expression values are obviously positive, 0 or greater
if(this.ShortMeanExp[i].get() > 0.0) {
double fc = this.LongMeanExp[i].get() / this.ShortMeanExp[i].get();
if(fc > 0.0) {
double l2fc = Math.log(fc)/Math.log(2);
this.L2FC[i] = new SimpleDoubleProperty(Double.parseDouble(formatter.format(l2fc)));
}
else {
// LongMeanExp must be 0
this.L2FC[i] = new SimpleDoubleProperty(Double.parseDouble(formatter.format(-MAX_L2FC)));
}
}
else {
// can never have both being 0, would not include in analysis
this.L2FC[i] = new SimpleDoubleProperty(Double.parseDouble(formatter.format(MAX_L2FC)));
}
}
}
else {
this.LongMeanExp = null;
this.ShortMeanExp = null;
this.LongerConditionValues = null;
this.L2FC = null;
}
this.pValue = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.pValue)));
this.qValue = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.qValue)));
this.podiumChange = new SimpleStringProperty(dsra.podiumChange? "YES" : "NO");
this.podiumTimes = new SimpleStringProperty(dsra.podiumTimes);
this.LongerCondition = new SimpleStringProperty(dsra.LongerCondition);
this.favoredTimes = new SimpleStringProperty(dsra.favoredTimes);
this.totalChange = new SimpleDoubleProperty(Double.parseDouble(String.format("%.02f", ((double)Math.round(dsra.totalChange*100)/100.0))));
this.ds = new SimpleStringProperty(dsra.ds? "DPA" : "Not DPA");
//Expression Levels
this.distalExpressionA = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.distalExpressionA)));
this.distalExpressionB = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.distalExpressionB)));
this.proximalExpressionA = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.proximalExpressionA)));
this.proximalExpressionB = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.proximalExpressionB)));
//Mean expression
this.distalMeanExpression = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.distalMeanExpression)));
this.proximalMeanExpression = new SimpleDoubleProperty(Double.parseDouble(formatter.format(dsra.proximalMeanExpression)));
// cluster is only valid in time course series - will need to change if other than maSigPro
if(dsra.clusters){
// Clus Value
int cnt = dsra.clus.length;
this.clusterCmp = new SimpleStringProperty[cnt];
if(!String.valueOf(dsra.clus[0]).equals("0"))
this.cluster = new SimpleStringProperty(String.valueOf(dsra.clus[0]));
else
this.cluster = new SimpleStringProperty("");
for(int i = 0; i < cnt; i++)
if(!String.valueOf(dsra.clus[i]).equals("0"))
this.clusterCmp[i] = new SimpleStringProperty(String.valueOf(dsra.clus[i]));
else
this.clusterCmp[i]=new SimpleStringProperty("");
}else{
this.cluster = null;
this.clusterCmp = null;
}
}
public String getChromo() { return chromo.get(); }
public String getStrand() { return strand.get(); }
public Integer getIsoforms() { return isoforms.get(); }
public String getCoding() { return coding.get(); }
public String getFavored() { return favored.get(); }
public Double getL2FC(int idx) {
double value = 0.0;
if(L2FC != null && idx < L2FC.length)
value = L2FC[idx].get();
return value;
}
public Double getLongMeanExp(int idx) {
double value = 0.0;
if(LongMeanExp != null && idx < LongMeanExp.length)
value = LongMeanExp[idx].get();
return value;
}
public Double getShortMeanExp(int idx) {
double value = 0.0;
if(ShortMeanExp != null && idx < ShortMeanExp.length)
value = ShortMeanExp[idx].get();
return value;
}
public Double getLongerConditionValues(int idx) {
double value = 0.0;
if(LongerConditionValues != null && idx < LongerConditionValues.length)
value = LongerConditionValues[idx].get();
return value;
}
public Double getPValue() { return pValue.get(); }
public Double getQValue() { return qValue.get(); }
public String getPodiumChange() { return podiumChange.get(); }
public String getPodiumTimes() { return podiumTimes.get(); }
public String getLongerCondition() { return LongerCondition.get(); }
public String getFavoredTimes() { return favoredTimes.get(); }
public Double getTotalChange() { return totalChange.get(); }
public String getDS() { return ds.get(); }
public Double getDistalExpressionA() { return distalExpressionA.get(); }
public Double getDistalExpressionB() { return distalExpressionB.get(); }
public Double getProximalExpressionA() { return proximalExpressionA.get(); }
public Double getProximalExpressionB() { return proximalExpressionB.get(); }
public Double getDistalMeanExpression() { return distalMeanExpression.get(); }
public Double getProximalMeanExpression() { return proximalMeanExpression.get(); }
public String getCluster() { return cluster.get(); }
//public String getDECmp1() { return deCmp[1].get(); }
public String getClusterCmp1() { return clusterCmp[1].get(); }
//public String getDECmp2() { return deCmp[2].get(); }
public String getClusterCmp2() { return clusterCmp[2].get(); }
//public String getDECmp3() { return deCmp[3].get(); }
public String getClusterCmp3() { return clusterCmp[3].get(); }
@Override
public int compareTo(DPASelectionResults td) {
return (gene.get().compareTo(td.gene.get()));
}
}
}