-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_CPTF.py
125 lines (96 loc) · 3.73 KB
/
run_CPTF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import torch
# import torch.distributions as distributions
# from torch.optim import Adam
# from torch.optim import LBFGS
# from sklearn.cluster import KMeans
import random
import pickle
import fire
from tqdm.auto import tqdm, trange
# from baselines.kernels import KernelRBF, KernelARD
from baselines.CPTF_linear import *
from baselines.CPTF_rnn import *
from baselines.CPTF_time import *
from data.real_events import EventData, EventDataBT
from torch.utils.data import Dataset, DataLoader
from infrastructure.misc import *
from infrastructure.configs import *
np.random.seed(0)
torch.manual_seed(0)
random.seed(0)
def evaluation(**kwargs):
config = CPExpConfig()
config.parse(kwargs)
device = torch.device(config.device)
domain = config.domain
fold = config.fold
#cprint('g', ndims)
#cprint('g', nmod)
if config.trans=='linear':
method = 'CPTF_linear'
dataset_train = EventDataBT(domain, mode='train', fold=fold)
dataset_test = EventDataBT(domain, mode='test', fold=fold)
elif config.trans=='rnn':
method = 'CPTF_rnn'
dataset_train = EventDataBT(domain, mode='train', fold=fold)
dataset_test = EventDataBT(domain, mode='test', fold=fold)
elif config.trans=='time':
method = 'CPTF_time'
dataset_train = EventData(domain, mode='train', fold=fold)
dataset_test = EventData(domain, mode='test', fold=fold)
else:
raise Exception('Error in run_CPTF.py')
ndims = dataset_train.nvec
nmod = dataset_train.nmod
res_path = os.path.join(
'__res__',
dataset_train.domain,
method,
'rank'+str(config.R),
'fold{}'.format(dataset_train.fold)
)
log_path = os.path.join(
'__log__',
dataset_train.domain,
method,
'rank'+str(config.R),
'fold{}'.format(dataset_train.fold)
)
create_path(res_path)
create_path(log_path)
logger = get_logger(logpath=os.path.join(log_path, 'exp.log'), displaying=config.verbose)
logger.info(config)
batch_size = config.batch_size
R = config.R
nepoch = config.max_epochs
m = config.m
lr = config.learning_rate
dataloader_train = DataLoader(dataset_train, batch_size=len(dataset_train), shuffle=False)
dataloader_test = DataLoader(dataset_test, batch_size=len(dataset_train), shuffle=False)
train_ind, train_time, train_y = next(iter(dataloader_train))
train_ind = train_ind.data.numpy()
train_time = train_time.reshape([-1,1]).data.numpy()
train_y = train_y.reshape([-1,1]).data.numpy()
test_ind, test_time, test_y = next(iter(dataloader_test))
test_ind = test_ind.data.numpy()
test_time = test_time.reshape([-1,1])
test_y = test_y.reshape([-1,1])
U = []
for i in range(len(ndims)):
U.append(np.random.rand(ndims[i],R))
perform_meters = PerformMeters(save_path=res_path, logger=logger, test_interval=config.test_interval)
if config.trans=='linear':
model = CPTF_linear(train_ind, train_y, U, batch_size, torch.device('cpu'))
model.train(test_ind, test_y, lr, nepoch, perform_meters)
elif config.trans=='rnn':
model = CPTF_rnn(train_ind, train_y, U, batch_size, torch.device('cpu'))
model.train(test_ind, test_y, lr, nepoch, perform_meters)
elif config.trans=='time':
model = CPTF_time(train_ind, train_y, train_time, U, batch_size, torch.device('cpu'))
model.train(test_ind, test_y, test_time, lr, nepoch, perform_meters)
else:
raise Exception('Error in model run_CPTF.py')
#model.train(test_ind, test_y, lr, nepoch, perform_meters)
if __name__=='__main__':
fire.Fire(evaluation)