-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_glo.py
168 lines (131 loc) · 5.77 KB
/
main_glo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import plac
from tqdm import tqdm
import numpy as np
from PIL import Image
import torch
from torch import nn
import torch.nn.functional as fnn
from torch.autograd import Variable
from torch.optim import SGD
from torchvision.datasets import LSUN
from torchvision import transforms
from torch.utils.data import Dataset
from torchvision.utils import make_grid
import os
import models
import utils
import argparse
desc = "Pytorch implementation of 'GLO'"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--dir', type=str, default='/data/LSUN_dataset/')
parser.add_argument('--prfx', type=str, default='glo')
parser.add_argument('--d', type=int, help='Dimensionality of latent representation space',default=128)
parser.add_argument('--lr_g', type=float, default=1)
parser.add_argument('--lr_z', type=float, default=10)
parser.add_argument('--e', type=int, default=25, help='The number of epochs to run')
parser.add_argument('--batch_size', type=int, default=128, help='Batch size')
parser.add_argument('--init', type=str, default='pca', help='initialization')
parser.add_argument('--loss', type=str, default='lap_l1', help='loss')
parser.add_argument('--cl', type=str, default='church_outdoor', help='class of LSUN')
parser.add_argument('--gpu', type=bool, default=True,help='Use GPU?')
parser.add_argument('--n_pca', type=int, help='Number of samples to take for PCA',default=(64 * 64 * 3 * 2))
parser.add_argument('--n', type=int, help='Cap on the number of samples from the LSUN dataset',default=10000)
def main(args):
def maybe_cuda(tensor):
return tensor.cuda() if args.gpu else tensor
Img_dir = 'Figs/'
if not os.path.exists(Img_dir):
os.makedirs(Img_dir)
Model_dir = 'Models/'
if not os.path.exists(Model_dir):
os.makedirs(Model_dir)
Data_dir = 'Data/'
if not os.path.exists(Data_dir):
os.makedirs(Data_dir)
train_set = utils.IndexedDataset(
LSUN(args.dir, classes=[args.cl+'_train'],
transform=transforms.Compose([
transforms.Resize(64),
transforms.CenterCrop(64),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
)
train_loader = torch.utils.data.DataLoader(
train_set, batch_size=args.batch_size,
shuffle=True, drop_last=True,
num_workers=8, pin_memory=args.gpu,
)
val_loader = torch.utils.data.DataLoader(train_set, shuffle=False, batch_size=8*8)
if args.n > 0:
train_set.base.length = args.n
train_set.base.indices = [args.n]
# initialize representation space:
if args.init == 'pca':
print('Check if PCA is already calculated...')
pca_path = 'Data/GLO_pca_init_{}_{}.pt'.format(
args.cl, args.d)
if os.path.isfile(pca_path):
print(
'[Latent Init] PCA already calculated before and saved at {}'.
format(pca_path))
Z = torch.load(pca_path)
else:
from sklearn.decomposition import PCA
# first, take a subset of train set to fit the PCA
X_pca = np.vstack([
X.cpu().numpy().reshape(len(X), -1)
for i, (X, _, _)
in zip(tqdm(range(args.n_pca // train_loader.batch_size), 'collect data for PCA'),
train_loader)
])
print("perform PCA...")
pca = PCA(n_components=args.d)
pca.fit(X_pca)
# then, initialize latent vectors to the pca projections of the complete dataset
Z = np.empty((len(train_loader.dataset), args.d))
for X, _, idx in tqdm(train_loader, 'pca projection'):
Z[idx] = pca.transform(X.cpu().numpy().reshape(len(X), -1))
elif args.init == 'random':
Z = np.random.randn(len(train_set), args.d)
Z = utils.project_l2_ball(Z)
model_generator = maybe_cuda(models.Generator(args.d))
loss_fn = utils.LapLoss(max_levels=3) if args.loss == 'lap_l1' else nn.MSELoss()
zi = maybe_cuda(torch.zeros((args.batch_size, args.d)))
zi = Variable(zi, requires_grad=True)
optimizer = SGD([
{'params': model_generator.parameters(), 'lr': args.lr_g},
{'params': zi, 'lr': args.lr_z}
])
Xi_val, _, idx_val = next(iter(val_loader))
utils.imsave(Img_dir+'target_%s_%s.png' % (args.cl,args.prfx),
make_grid(Xi_val.cpu() / 2. + 0.5, nrow=8).numpy().transpose(1, 2, 0))
for epoch in range(args.e):
losses = []
progress = tqdm(total=len(train_loader), desc='epoch % 3d' % epoch)
for i, (Xi, yi, idx) in enumerate(train_loader):
Xi = Variable(maybe_cuda(Xi))
zi.data = maybe_cuda(torch.FloatTensor(Z[idx.numpy()]))
optimizer.zero_grad()
rec = model_generator(zi)
loss = loss_fn(rec, Xi)
loss.backward()
optimizer.step()
Z[idx.numpy()] = utils.project_l2_ball(zi.data.cpu().numpy())
losses.append(loss.data[0])
progress.set_postfix({'loss': np.mean(losses[-100:])})
progress.update()
progress.close()
# visualize reconstructions
rec = model_generator(Variable(maybe_cuda(torch.FloatTensor(Z[idx_val.numpy()]))))
utils.imsave(Img_dir+'%s_%s_rec_epoch_%03d_%s.png' % (args.cl,args.prfx,epoch, args.init),
make_grid(rec.data.cpu() / 2. + 0.5, nrow=8).numpy().transpose(1, 2, 0))
print('Saving the model : epoch % 3d'%epoch)
utils.save_checkpoint({
'epoch': epoch + 1,
'state_dict': model_generator.state_dict(),
},
Model_dir + 'Glo_{}_z_{}_epch_{}_init_{}.pt'.format(args.cl,args.d, epoch, args.init))
if __name__ == "__main__":
args= parser.parse_args()
main(args)