forked from xiahouzuoxin/fft
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathzx_fft.c
241 lines (211 loc) · 5.5 KB
/
zx_fft.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*
* zx_fft.c
*
* Implementation of Fast Fourier Transform(FFT)
* and reversal Fast Fourier Transform(IFFT)
*
* Created on: 2013-8-5
* Author: monkeyzx
*
* TEST OK 2014.01.14
* == 2014.01.14
* Replace @BitReverse(x,x,N,M) by refrence to
* <The Scientist and Engineer's Guide to Digital Signal Processing>
*/
#include "zx_fft.h"
const float sin_tb[] = { // 精度(PI PI/2 PI/4 PI/8 PI/16 ... PI/(2^k))
0.000000, 1.000000, 0.707107, 0.382683, 0.195090, 0.098017,
0.049068, 0.024541, 0.012272, 0.006136, 0.003068, 0.001534,
0.000767, 0.000383, 0.000192, 0.000096, 0.000048, 0.000024,
0.000012, 0.000006, 0.000003
};
const float cos_tb[] = { // 精度(PI PI/2 PI/4 PI/8 PI/16 ... PI/(2^k))
-1.000000, 0.000000, 0.707107, 0.923880, 0.980785, 0.995185,
0.998795, 0.999699, 0.999925, 0.999981, 0.999995, 0.999999,
1.000000, 1.000000, 1.000000, 1.000000 , 1.000000, 1.000000,
1.000000, 1.000000, 1.000000
};
/*
* FFT Algorithm
* === Inputs ===
* x : complex numbers
* N : nodes of FFT. @N should be power of 2, that is 2^(*)
* === Output ===
* the @x contains the result of FFT algorithm, so the original data
* in @x is destroyed, please store them before using FFT.
*/
int fft(TYPE_FFT *x, uint32_t N)
{
int i,j,l,k,ip;
static uint32_t M = 0;
static int le,le2;
static TYPE_FFT_E sR,sI,tR,tI,uR,uI;
M = floor_log2_32(N);
/*
* bit reversal sorting
*/
l = N >> 1;
j = l;
ip = N-2;
for (i=1; i<=ip; i++) {
if (i < j) {
tR = x[j].real;
tI = x[j].imag;
x[j].real = x[i].real;
x[j].imag = x[i].imag;
x[i].real = tR;
x[i].imag = tI;
}
k = l;
while (k <= j) {
j = j - k;
k = k >> 1;
}
j = j + k;
}
/*
* For Loops
*/
for (l=1; l<=M; l++) { /* loop for ceil{log2(N)} */
//le = (int)pow(2,l);
le = (int)(1 << l);
le2 = (int)(le >> 1);
uR = 1;
uI = 0;
k = floor_log2_32(le2);
sR = cos_tb[k]; //cos(PI / le2);
sI = -sin_tb[k]; // -sin(PI / le2)
for (j=1; j<=le2; j++) { /* loop for each sub DFT */
//jm1 = j - 1;
for (i=j-1; i<N; i+=le) { /* loop for each butterfly */
ip = i + le2;
tR = x[ip].real * uR - x[ip].imag * uI;
tI = x[ip].real * uI + x[ip].imag * uR;
x[ip].real = x[i].real - tR;
x[ip].imag = x[i].imag - tI;
x[i].real += tR;
x[i].imag += tI;
} /* Next i */
tR = uR;
uR = tR * sR - uI * sI;
uI = tR * sI + uI *sR;
} /* Next j */
} /* Next l */
return 0;
}
/*
* FFT Algorithm with inputs are real
* === Inputs ===
* x : complex numbers
* N : nodes of FFT. @N should be power of 2, that is 2^(*)
* === Output ===
* the @x contains the result of FFT algorithm, so the original data
* in @x is destroyed, please store them before using FFT.
*/
int fft_real(TYPE_FFT *x, uint32_t N)
{
int i,j,l,k;
static uint32_t M = 0;
static uint32_t ND4 = 0;
static TYPE_FFT_E sR,sI,tR,tI,uR,uI;
/* Separate even and odd */
M = N >> 1;
for (i=0; i<M; i++) {
x[i].real = x[i<<1].real;
x[i].imag = x[(i<<1)+1].real;
}
/* N/2 points FFT */
fft(x, M);
/* Even/Odd frequency domain decomposition */
ND4 = N >> 2;
for (i=1; i<ND4; i++) {
j = M - i;
k = i + M;
l = j + M;
x[k].real = (x[i].imag + x[j].imag) / 2;
x[l].real = x[k].real;
x[k].imag = -(x[i].real - x[j].real) / 2;
x[l].imag = -x[k].imag;
x[i].real = (x[i].real + x[j].real) / 2;
x[j].real = x[i].real;
x[i].imag = (x[i].imag - x[j].imag) / 2;
x[j].imag = -x[i].imag;
}
x[N-ND4].real = x[ND4].imag;
x[M].real = x[0].imag;
x[N-ND4].imag = 0;
x[M].imag = 0;
x[ND4].imag = 0;
x[0].imag = 0;
/* Complete last stage FFT */
uR = 1;
uI = 0;
k = floor_log2_32(M);
sR = cos_tb[k]; //cos(PI / M);
sI = -sin_tb[k]; // -sin(PI / M)
//sR = cos(PI / M);
//sI = -sin(PI / M);
for (i=0; i<M; i++) { /* loop for each sub DFT */
k = i + M;
tR = x[k].real * uR - x[k].imag * uI;
tI = x[k].real * uI + x[k].imag * uR;
x[k].real = x[i].real - tR;
x[k].imag = x[i].imag - tI;
x[i].real += tR;
x[i].imag += tI;
tR = uR;
uR = tR * sR - uI * sI;
uI = tR * sI + uI *sR;
} /* Next i */
return 0;
}
/*
* Inverse FFT Algorithm
* === Inputs ===
* x : complex numbers
* N : nodes of FFT. @N should be power of 2, that is 2^(*)
* === Output ===
* the @x contains the result of FFT algorithm, so the original data
* in @x is destroyed, please store them before using FFT.
*/
int ifft(TYPE_FFT *x, uint32_t N)
{
int k = 0;
for (k=0; k<=N-1; k++) {
x[k].imag = -x[k].imag;
}
fft(x, N); /* using FFT */
for (k=0; k<=N-1; k++) {
x[k].real = x[k].real / N;
x[k].imag = -x[k].imag / N;
}
return 0;
}
/*
* Inverse FFT Algorithm with real in Time Domain
* === Inputs ===
* x : complex numbers
* N : nodes of FFT. @N should be power of 2, that is 2^(*)
* === Output ===
* the @x contains the result of FFT algorithm, so the original data
* in @x is destroyed, please store them before using FFT.
*/
int ifft_real(TYPE_FFT *x, uint32_t N)
{
int k = 0;
/* Make frequency domain symmetrical */
for (k=(N>>1)+1; k<N; k++) {
x[k].real = x[N-k].real;
x[k].imag = -x[N-k].imag;
}
/* Add real and imag parts together */
for (k=0; k<N; k++) {
x[k].real += x[k].imag;
}
fft_real(x, N); /* using FFT */
for (k=0; k<N; k++) {
x[k].real = (x[k].real + x[k].imag) / N;
x[k].imag = 0;
}
return 0;
}