forked from huyhoang17/Vietnamese_Handwriting_Recognition
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
178 lines (132 loc) · 5.16 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import cv2
import numpy as np
from PIL import Image
import scipy.misc
import src.config as cf
from src.log import get_logger
logger = get_logger(__name__)
def check_eq(img, img2):
return np.array_equal(img, img2)
def crop(img):
y_min = np.min(np.where(img < cf.PIXEL_INDEX)[0])
y_max = np.max(np.where(img < cf.PIXEL_INDEX)[0])
x_min = np.min(np.where(img < cf.PIXEL_INDEX)[1])
x_max = np.max(np.where(img < cf.PIXEL_INDEX)[1])
img = img[y_min:y_max, x_min:x_max]
return img
"""
Reference: https://github.com/josarajar/HTRTF/blob/master/Modules/DataAugmentation.py # noqa
"""
def scale(img, scale_prob=0.5, scale_stdv=0.01):
scale = np.random.binomial(1, scale_prob)
if scale:
imgPIL = Image.fromarray(img)
ho, vo = imgPIL.size
scale_factor = np.random.lognormal(sigma=scale_stdv)
hn, vn = int(scale_factor * ho), int(scale_factor * vo)
img_sc = imgPIL.resize((hn, vn))
img = np.array(img_sc).reshape((vn, hn))
if hn > ho:
img = img[int(vn / 2) - int(vo / 2):int(vn / 2) +
int(np.ceil(vo / 2)),
int(hn / 2) - int(ho / 2):int(hn / 2) +
int(np.ceil(ho / 2))]
else:
img = np.pad(
img, ((int((vo - vn) / 2), int(np.ceil((vo - vn) / 2))),
((int((ho - hn) / 2), int(np.ceil((ho - hn) / 2))))),
mode='constant'
)
return img
def shear(img, shear_prob=0.5, shear_prec=150):
shear = np.random.binomial(1, shear_prob)
if shear:
rows, cols = img.shape
shear_angle = np.random.vonmises(0, kappa=shear_prec)
m = np.tan(shear_angle)
pts1 = np.float32([[50, 50], [200, 50], [50, 200]])
pts2 = np.float32([[50, 50], [200, 50], [50 + m * 150, 200]])
M = cv2.getAffineTransform(pts1, pts2)
img = cv2.warpAffine(img, M, (cols, rows))
return img
def rotate(img, rotate_prob=0.5, rotate_prec=250):
rotate = np.random.binomial(1, rotate_prob)
if rotate:
rows, cols = img.shape
rotate_prec = rotate_prec * max(rows / cols, cols / rows)
rotate_angle = np.random.vonmises(0, kappa=rotate_prec) * 180 / np.pi
M = cv2.getRotationMatrix2D((cols / 2, rows / 2), rotate_angle, 1)
img = cv2.warpAffine(img, M, (cols, rows))
return img
def translate(img, translate_prob=0.5, translate_stdv=0.005):
translate = np.random.binomial(1, translate_prob)
if translate:
rows, cols = img.shape
h_translation_factor = np.random.normal(0, scale=translate_stdv * cols)
v_translation_factor = np.random.normal(0, scale=translate_stdv * rows)
M = np.float32([[1, 0, h_translation_factor],
[0, 1, v_translation_factor]])
img = cv2.warpAffine(img, M, (cols, rows))
return img
def dilate(img, dilation_prob=0.5, dilation_srate=0.99, dilation_rrate=1):
dilate = np.random.binomial(1, dilation_prob)
if dilate:
kernel_size = np.min([2 * np.random.geometric(dilation_srate) + 1, 15])
kernel = np.zeros([kernel_size, kernel_size])
center = np.array([int(kernel_size / 2), int(kernel_size / 2)])
for x in range(kernel_size):
for y in range(kernel_size):
d = np.linalg.norm(np.array([x, y]) - center)
p = np.exp(-d * 1)
value = np.random.binomial(1, p)
kernel[x, y] = value or 10**-16
img = cv2.dilate(img, kernel, iterations=1)
return img
def erode(img, erosion_prob=0.5, erosion_srate=1, erosion_rrate=1.2):
erode = np.random.binomial(1, erosion_prob)
if erode:
kernel_size = np.min([2 * np.random.geometric(erosion_srate) + 1, 15])
kernel = np.zeros([kernel_size, kernel_size])
center = np.array([int(kernel_size / 2), int(kernel_size / 2)])
for x in range(kernel_size):
for y in range(kernel_size):
d = np.linalg.norm(np.array([x, y]) - center)
p = np.exp(-d * 1)
value = np.random.binomial(1, p)
kernel[x, y] = value or 10**-16
img = cv2.erode(img, kernel, iterations=1)
return img
def gen_data(path_dir, img, fn, reversed_img=True,
is_save=False, return_img=False):
"""
:param path_dir: path dir to save image
:param img: ndarray image
:param fn: main filename
"""
logger.info("size: %s", img.shape)
if reversed_img:
# convert from (bg: w, text: b) to (bg: b, text: w)
img = 255 - img
imgs = []
fns = []
name = fn.split('.')[0]
suffix = fn.split('.')[1]
for ind in range(1, cf.NO_GEN_IMAGES + 1):
img_np = translate(img)
img_np = rotate(img_np)
img_np = shear(img_np)
img_np = scale(img_np)
img_np = dilate(img_np)
# img_np = erode(img_np)
imgs.append(img_np)
fn_new = "{}_{}.{}".format(name, ind, suffix)
if is_save:
scipy.misc.imsave(os.path.join(
path_dir, fn_new), img_np
)
fns.append(fn_new)
if return_img:
return imgs, fns
else:
return fns