forked from sinovation/ZEN
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_pre_train.py
495 lines (426 loc) · 22.9 KB
/
run_pre_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# coding: utf-8
# Copyright 2019 Sinovation Ventures AI Institute
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch pretrain for ZEN model."""
from argparse import ArgumentParser
from pathlib import Path
import os
import torch
import logging
import json
import random
import numpy as np
from collections import namedtuple
import time
import datetime
from torch.utils.data import DataLoader, Dataset, RandomSampler
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm
from ZEN import WEIGHTS_NAME, CONFIG_NAME
from ZEN import ZenConfig, ZenForPreTraining
from ZEN import BertTokenizer
from ZEN import BertAdam, WarmupLinearSchedule
InputFeatures = namedtuple(
"InputFeatures",
"input_ids input_mask segment_ids lm_label_ids is_next ngram_ids ngram_masks ngram_positions ngram_starts ngram_lengths ngram_segment_ids")
log_format = '%(asctime)-10s: %(message)s'
logging.basicConfig(level=logging.INFO, format=log_format)
def convert_example_to_features(example, tokenizer, max_seq_length, max_ngram_in_sequence):
tokens = example["tokens"]
segment_ids = example["segment_ids"]
is_random_next = example["is_random_next"]
masked_lm_positions = example["masked_lm_positions"]
masked_lm_labels = example["masked_lm_labels"]
# add ngram level information
ngram_ids = example["ngram_ids"]
ngram_positions = example["ngram_positions"]
ngram_lengths = example["ngram_lengths"]
ngram_segment_ids = example["ngram_segment_ids"]
assert len(tokens) == len(segment_ids) <= max_seq_length # The preprocessed data should be already truncated
input_ids = tokenizer.convert_tokens_to_ids(tokens)
masked_label_ids = tokenizer.convert_tokens_to_ids(masked_lm_labels)
input_array = np.zeros(max_seq_length, dtype=np.int)
input_array[:len(input_ids)] = input_ids
mask_array = np.zeros(max_seq_length, dtype=np.bool)
mask_array[:len(input_ids)] = 1
segment_array = np.zeros(max_seq_length, dtype=np.bool)
segment_array[:len(segment_ids)] = segment_ids
lm_label_array = np.full(max_seq_length, dtype=np.int, fill_value=-1)
lm_label_array[masked_lm_positions] = masked_label_ids
# add ngram pads
ngram_id_array = np.zeros(max_ngram_in_sequence, dtype=np.int)
ngram_id_array[:len(ngram_ids)] = ngram_ids
# record the masked positions
# The matrix here take too much space either in disk or in memory, so the usage have to be lazily convert the
# the start position and length to the matrix at training time.
ngram_positions_matrix = np.zeros(shape=(max_seq_length, max_ngram_in_sequence), dtype=np.bool)
for i in range(len(ngram_ids)):
ngram_positions_matrix[ngram_positions[i]:ngram_positions[i]+ngram_lengths[i], i] = 1
ngram_start_array = np.zeros(max_ngram_in_sequence, dtype=np.int32)
ngram_start_array[:len(ngram_ids)] = ngram_positions
ngram_length_array = np.zeros(max_ngram_in_sequence, dtype=np.int32)
ngram_length_array[:len(ngram_ids)] = ngram_lengths
ngram_mask_array = np.zeros(max_ngram_in_sequence, dtype=np.bool)
ngram_mask_array[:len(ngram_ids)] = 1
ngram_segment_array = np.zeros(max_ngram_in_sequence, dtype=np.bool)
ngram_segment_array[:len(ngram_ids)] = ngram_segment_ids
features = InputFeatures(input_ids=input_array,
input_mask=mask_array,
segment_ids=segment_array,
lm_label_ids=lm_label_array,
is_next=is_random_next,
ngram_ids=ngram_id_array,
ngram_masks=ngram_mask_array,
ngram_positions=ngram_positions_matrix,
ngram_starts=ngram_start_array,
ngram_lengths=ngram_length_array,
ngram_segment_ids=ngram_segment_array)
return features
class PregeneratedDataset(Dataset):
def __init__(self, training_path, epoch, tokenizer, num_data_epochs, reduce_memory=False, fp16=False):
self.vocab = tokenizer.vocab
self.tokenizer = tokenizer
self.epoch = epoch
self.data_epoch = epoch % num_data_epochs
data_file = training_path / f"epoch_{self.data_epoch}.json"
metrics_file = training_path / f"epoch_{self.data_epoch}_metrics.json"
assert data_file.is_file() and metrics_file.is_file()
metrics = json.loads(metrics_file.read_text())
num_samples = metrics['num_training_examples']
seq_len = metrics['max_seq_len']
max_ngram_in_sequence = metrics['max_ngram_in_sequence']
self.temp_dir = None
self.working_dir = None
self.fp16 = fp16
if reduce_memory:
self.temp_dir = "/tmp"
# TemporaryDirectory()
self.working_dir = Path(self.temp_dir)
input_ids = np.memmap(filename=self.working_dir / 'input_ids.memmap',
mode='w+', dtype=np.int32, shape=(num_samples, seq_len))
input_masks = np.memmap(filename=self.working_dir / 'input_masks.memmap',
shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
segment_ids = np.memmap(filename=self.working_dir / 'segment_ids.memmap',
shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
lm_label_ids = np.memmap(filename=self.working_dir / 'lm_label_ids.memmap',
shape=(num_samples, seq_len), mode='w+', dtype=np.int32)
lm_label_ids[:] = -1
is_nexts = np.memmap(filename=self.working_dir / 'is_nexts.memmap',
shape=(num_samples,), mode='w+', dtype=np.bool)
# add ngram level features
ngram_ids = np.memmap(filename=self.working_dir / 'ngram_ids.memmap',
mode='w+', dtype=np.int32, shape=(num_samples, max_ngram_in_sequence))
ngram_masks = np.memmap(filename=self.working_dir / 'ngram_masks.memmap',
mode='w+', dtype=np.bool, shape=(num_samples, max_ngram_in_sequence))
ngram_positions = np.memmap(filename=self.working_dir / 'ngram_positions.memmap',
mode='w+', dtype=np.bool, shape=(num_samples, seq_len, max_ngram_in_sequence))
ngram_starts = np.memmap(filename=self.working_dir / 'ngram_starts.memmap',
mode='w+', dtype=np.int32, shape=(num_samples, max_ngram_in_sequence))
ngram_lengths = np.memmap(filename=self.working_dir / 'ngram_lengths.memmap',
mode='w+', dtype=np.int32, shape=(num_samples, max_ngram_in_sequence))
ngram_segment_ids = np.memmap(filename=self.working_dir / 'ngram_segment_ids.memmap',
mode='w+', dtype=np.bool, shape=(num_samples, max_ngram_in_sequence))
else:
input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32)
input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
segment_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
lm_label_ids = np.full(shape=(num_samples, seq_len), dtype=np.int32, fill_value=-1)
is_nexts = np.zeros(shape=(num_samples,), dtype=np.bool)
# add ngram level features
ngram_ids = np.zeros(shape=(num_samples, max_ngram_in_sequence), dtype=np.int32)
ngram_masks = np.zeros(shape=(num_samples, max_ngram_in_sequence), dtype=np.bool)
ngram_positions = np.zeros(shape=(num_samples, seq_len, max_ngram_in_sequence), dtype=np.bool)
ngram_starts = np.zeros(shape=(num_samples, max_ngram_in_sequence), dtype=np.int32)
ngram_lengths = np.zeros(shape=(num_samples, max_ngram_in_sequence), dtype=np.int32)
ngram_segment_ids = np.zeros(shape=(num_samples, max_ngram_in_sequence), dtype=np.bool)
logging.info(f"Loading training examples for epoch {epoch}")
with data_file.open() as f:
for i, line in enumerate(tqdm(f, total=num_samples, desc="Training examples")):
line = line.strip()
example = json.loads(line)
features = convert_example_to_features(example, tokenizer, seq_len, max_ngram_in_sequence)
input_ids[i] = features.input_ids
segment_ids[i] = features.segment_ids
input_masks[i] = features.input_mask
lm_label_ids[i] = features.lm_label_ids
is_nexts[i] = features.is_next
# add ngram related ids
ngram_ids[i] = features.ngram_ids
ngram_masks[i] = features.ngram_masks
ngram_positions[i] = features.ngram_positions
ngram_starts[i] = features.ngram_starts
ngram_lengths[i] = features.ngram_lengths
ngram_segment_ids[i] = features.ngram_segment_ids
assert i == num_samples - 1 # Assert that the sample count metric was true
logging.info("Loading complete!")
self.num_samples = num_samples
self.seq_len = seq_len
self.input_ids = input_ids
self.input_masks = input_masks
self.segment_ids = segment_ids
self.lm_label_ids = lm_label_ids
self.is_nexts = is_nexts
self.ngram_ids = ngram_ids
self.ngram_masks = ngram_masks
self.ngram_positions = ngram_positions
self.ngram_segment_ids = ngram_segment_ids
self.ngram_starts = ngram_starts
self.ngram_lengths = ngram_lengths
def __len__(self):
return self.num_samples
def __getitem__(self, item):
position = torch.tensor(self.ngram_positions[item].astype(np.double))
if self.fp16:
position = position.half()
else:
position = position.float()
return (torch.tensor(self.input_ids[item].astype(np.int64)),
torch.tensor(self.input_masks[item].astype(np.int64)),
torch.tensor(self.segment_ids[item].astype(np.int64)),
torch.tensor(self.lm_label_ids[item].astype(np.int64)),
torch.tensor(self.is_nexts[item].astype(np.int64)),
torch.tensor(self.ngram_ids[item].astype(np.int64)),
torch.tensor(self.ngram_masks[item].astype(np.int64)),
position,
torch.tensor(self.ngram_starts[item].astype(np.int64)),
torch.tensor(self.ngram_lengths[item].astype(np.int64)),
torch.tensor(self.ngram_segment_ids[item].astype(np.int64)))
def main():
parser = ArgumentParser()
parser.add_argument('--pregenerated_data', type=Path, required=True)
parser.add_argument('--output_dir', type=Path, required=True)
parser.add_argument("--bert_model", type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--do_lower_case", action="store_true")
parser.add_argument("--reduce_memory", action="store_true",
help="Store training data as on-disc memmaps to massively reduce memory usage")
parser.add_argument("--epochs", type=int, default=3, help="Number of epochs to train for")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--scratch',
action='store_true',
help="Whether to train from scratch")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--learning_rate",
default=3e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--save_name',
type=str,
default="zen",
help="The prefix used for saving the remote model")
parser.add_argument("--already_trained_epoch",
default=0,
type=int)
args = parser.parse_args()
assert args.pregenerated_data.is_dir(), \
"--pregenerated_data should point to the folder of files made by pregenerate_training_data.py!"
samples_per_epoch = []
for i in range(args.epochs):
epoch_file = args.pregenerated_data / f"epoch_{i}.json"
metrics_file = args.pregenerated_data / f"epoch_{i}_metrics.json"
if epoch_file.is_file() and metrics_file.is_file():
metrics = json.loads(metrics_file.read_text())
samples_per_epoch.append(metrics['num_training_examples'])
else:
if i == 0:
exit("No training data was found!")
print(f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs}).")
print("This script will loop over the available data, but training diversity may be negatively impacted.")
num_data_epochs = i
break
else:
num_data_epochs = args.epochs
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logging.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
total_train_examples = 0
for i in range(args.epochs):
# The modulo takes into account the fact that we may loop over limited epochs of data
total_train_examples += samples_per_epoch[i % len(samples_per_epoch)]
num_train_optimization_steps = int(
total_train_examples / args.train_batch_size / args.gradient_accumulation_steps)
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
if args.scratch:
config = ZenConfig(21128, 104089)
model = ZenForPreTraining(config)
else:
model = ZenForPreTraining.from_pretrained(args.bert_model)
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
global_step = 0
logging.info("***** Running training *****")
logging.info(" Num examples = %d", total_train_examples)
logging.info(" Batch size = %d", args.train_batch_size)
logging.info(" Num steps = %d", num_train_optimization_steps)
model.train()
for epoch in range(args.epochs):
epoch_dataset = PregeneratedDataset(epoch=epoch,
training_path=args.pregenerated_data,
tokenizer=tokenizer,
num_data_epochs=num_data_epochs,
reduce_memory=args.reduce_memory,
fp16=args.fp16)
if args.local_rank == -1:
train_sampler = RandomSampler(epoch_dataset)
else:
train_sampler = DistributedSampler(epoch_dataset)
train_dataloader = DataLoader(epoch_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
with tqdm(total=len(train_dataloader), desc=f"Epoch {epoch}") as pbar:
for step, batch in enumerate(train_dataloader):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, lm_label_ids, is_next, ngram_ids, ngram_masks, ngram_positions, \
ngram_starts, \
ngram_lengths, ngram_segment_ids = batch
loss = model(input_ids,
ngram_ids,
ngram_positions,
segment_ids,
ngram_segment_ids,
input_mask,
ngram_masks,
lm_label_ids,
is_next)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
pbar.update(1)
mean_loss = tr_loss * args.gradient_accumulation_steps / nb_tr_steps
pbar.set_postfix_str(f"Loss: {mean_loss:.5f}")
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(global_step, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
# Save a trained model
ts = time.time()
st = datetime.datetime.fromtimestamp(ts).strftime('%m%d%H%M%S')
saving_path = args.output_dir
saving_path = Path(os.path.join(saving_path, args.save_name + st + "_epoch_" + str(epoch + args.already_trained_epoch)))
if saving_path.is_dir() and list(saving_path.iterdir()):
logging.warning(f"Output directory ({ saving_path }) already exists and is not empty!")
saving_path.mkdir(parents=True, exist_ok=True)
logging.info("** ** * Saving fine-tuned model ** ** * ")
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(saving_path, WEIGHTS_NAME)
output_config_file = os.path.join(saving_path, CONFIG_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(saving_path)
if __name__ == '__main__':
main()