-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayer_utils.py
141 lines (112 loc) · 4.08 KB
/
layer_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from cs231n.layers import *
from cs231n.fast_layers import *
def affine_relu_forward(x, w, b):
"""
Convenience layer that perorms an affine transform followed by a ReLU
Inputs:
- x: Input to the affine layer
- w, b: Weights for the affine layer
Returns a tuple of:
- out: Output from the ReLU
- cache: Object to give to the backward pass
"""
a, fc_cache = affine_forward(x, w, b)
out, relu_cache = relu_forward(a)
cache = (fc_cache, relu_cache)
return out, cache
def affine_relu_backward(dout, cache):
"""
Backward pass for the affine-relu convenience layer
"""
fc_cache, relu_cache = cache
da = relu_backward(dout, relu_cache)
dx, dw, db = affine_backward(da, fc_cache)
return dx, dw, db
def affine_bn_relu_forward(x, w, b, gamma, beta, bn_param):
"""
Convenience layer that performs an affine transform, batch normalization,
and ReLU.
Inputs:
- x: Array of shape (N, D1); input to the affine layer
- w, b: Arrays of shape (D2, D2) and (D2,) giving the weight and bias for
the affine transform.
- gamma, beta: Arrays of shape (D2,) and (D2,) giving scale and shift
parameters for batch normalization.
- bn_param: Dictionary of parameters for batch normalization.
Returns:
- out: Output from ReLU, of shape (N, D2)
- cache: Object to give to the backward pass.
"""
a, fc_cache = affine_forward(x, w, b)
a_bn, bn_cache = batchnorm_forward(a, gamma, beta, bn_param)
out, relu_cache = relu_forward(a_bn)
cache = (fc_cache, bn_cache, relu_cache)
return out, cache
def affine_bn_relu_backward(dout, cache):
"""
Backward pass for the affine-batchnorm-relu convenience layer.
"""
fc_cache, bn_cache, relu_cache = cache
da_bn = relu_backward(dout, relu_cache)
da, dgamma, dbeta = batchnorm_backward(da_bn, bn_cache)
dx, dw, db = affine_backward(da, fc_cache)
return dx, dw, db, dgamma, dbeta
def conv_relu_forward(x, w, b, conv_param):
"""
A convenience layer that performs a convolution followed by a ReLU.
Inputs:
- x: Input to the convolutional layer
- w, b, conv_param: Weights and parameters for the convolutional layer
Returns a tuple of:
- out: Output from the ReLU
- cache: Object to give to the backward pass
"""
a, conv_cache = conv_forward_fast(x, w, b, conv_param)
out, relu_cache = relu_forward(a)
cache = (conv_cache, relu_cache)
return out, cache
def conv_relu_backward(dout, cache):
"""
Backward pass for the conv-relu convenience layer.
"""
conv_cache, relu_cache = cache
da = relu_backward(dout, relu_cache)
dx, dw, db = conv_backward_fast(da, conv_cache)
return dx, dw, db
def conv_bn_relu_forward(x, w, b, gamma, beta, conv_param, bn_param):
a, conv_cache = conv_forward_fast(x, w, b, conv_param)
an, bn_cache = spatial_batchnorm_forward(a, gamma, beta, bn_param)
out, relu_cache = relu_forward(an)
cache = (conv_cache, bn_cache, relu_cache)
return out, cache
def conv_bn_relu_backward(dout, cache):
conv_cache, bn_cache, relu_cache = cache
dan = relu_backward(dout, relu_cache)
da, dgamma, dbeta = spatial_batchnorm_backward(dan, bn_cache)
dx, dw, db = conv_backward_fast(da, conv_cache)
return dx, dw, db, dgamma, dbeta
def conv_relu_pool_forward(x, w, b, conv_param, pool_param):
"""
Convenience layer that performs a convolution, a ReLU, and a pool.
Inputs:
- x: Input to the convolutional layer
- w, b, conv_param: Weights and parameters for the convolutional layer
- pool_param: Parameters for the pooling layer
Returns a tuple of:
- out: Output from the pooling layer
- cache: Object to give to the backward pass
"""
a, conv_cache = conv_forward_fast(x, w, b, conv_param)
s, relu_cache = relu_forward(a)
out, pool_cache = max_pool_forward_fast(s, pool_param)
cache = (conv_cache, relu_cache, pool_cache)
return out, cache
def conv_relu_pool_backward(dout, cache):
"""
Backward pass for the conv-relu-pool convenience layer
"""
conv_cache, relu_cache, pool_cache = cache
ds = max_pool_backward_fast(dout, pool_cache)
da = relu_backward(ds, relu_cache)
dx, dw, db = conv_backward_fast(da, conv_cache)
return dx, dw, db