-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathelf_reader.c
400 lines (353 loc) · 11 KB
/
elf_reader.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/* zso1 jk320790 */
#include <assert.h>
#include <elf.h>
#include <errno.h>
#include <stdio.h>
#include <sys/mman.h>
#include <stdlib.h>
#include <string.h>
#include "elf_reader.h"
#define MAX_PHNUM 100
#define NONSFI_PAGE_SIZE 0x1000
#define NONSFI_PAGE_MASK (NONSFI_PAGE_SIZE - 1)
static uintptr_t page_size_round_down(uintptr_t addr) {
return addr & ~NONSFI_PAGE_MASK;
}
static uintptr_t page_size_round_up(uintptr_t addr) {
return page_size_round_down(addr + NONSFI_PAGE_SIZE - 1);
}
static int elf_flags2mmap_flags(int pflags) {
return ((pflags & PF_X) != 0 ? PROT_EXEC : 0) |
((pflags & PF_R) != 0 ? PROT_READ : 0) |
((pflags & PF_W) != 0 ? PROT_WRITE : 0);
}
int is_image_valid(Elf32_Ehdr *hdr)
{
unsigned int ok = 1;
/* i386 */
if (hdr->e_machine != EM_386)
ok = 0;
/* ELF type */
if (hdr->e_type != ET_DYN)
ok = 0;
if (!ok)
errno = EINVAL;
return ok;
}
size_t map_elf(const char* name, void **mapped_load, struct protect **protections, int *number_of_protections)
{
FILE* elf = fopen(name, "rb");
if (!elf)
return -1;
int fd = fileno(elf);
size_t span;
/* Read ELF file headers. */
Elf32_Ehdr ehdr;
ssize_t bytes_read = pread(fd, &ehdr, sizeof(ehdr), 0);
if (bytes_read != sizeof(ehdr)) {
errno = EINVAL;
return -1;
}
if (!is_image_valid(&ehdr))
return -1;
if (ehdr.e_phnum > MAX_PHNUM) {
errno = EINVAL;
return -1;
}
Elf32_Phdr phdr[MAX_PHNUM];
ssize_t phdrs_size = sizeof(phdr[0]) * ehdr.e_phnum;
bytes_read = pread(fd, phdr, phdrs_size, ehdr.e_phoff);
if (bytes_read != phdrs_size) {
errno = EINVAL;
}
/* Find the first PT_LOAD segment. */
size_t phdr_index = 0;
while (phdr_index < ehdr.e_phnum && phdr[phdr_index].p_type != PT_LOAD)
++phdr_index;
if (phdr_index == ehdr.e_phnum) {
errno = EINVAL;
return -1;
}
/*
* ELF requires that PT_LOAD segments be in ascending order of p_vaddr.
* Find the last one to calculate the whole address span of the image.
*/
Elf32_Phdr *first_load = &phdr[phdr_index];
Elf32_Phdr *last_load = &phdr[ehdr.e_phnum - 1];
while (last_load > first_load && last_load->p_type != PT_LOAD)
--last_load;
if (first_load->p_vaddr != 0) {
errno = EINVAL;
return -1;
}
span = last_load->p_vaddr + last_load->p_memsz;
/* Reserve address space. */
void *mapping = mmap(NULL, span, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
if (mapping == MAP_FAILED) {
return -1;
}
uintptr_t load_bias = (uintptr_t) mapping;
/* Map the PT_LOAD segments. */
uintptr_t prev_segment_end = 0;
int entry_point_is_valid = 0;
*protections = (struct protect*)malloc((last_load - first_load + 1) * sizeof(struct protect));
*number_of_protections = 0;
struct protect *protection;
Elf32_Phdr *ph;
for (ph = first_load, protection = *protections; ph <= last_load; ph++, protection++) {
if (ph->p_type != PT_LOAD)
continue;
/* protection lvl will be set when relocations are complete */
protection->prot = elf_flags2mmap_flags(ph->p_flags);
(*number_of_protections)++;
uintptr_t segment_start = page_size_round_down(ph->p_vaddr);
uintptr_t segment_end = page_size_round_up(ph->p_vaddr + ph->p_memsz);
if (segment_start < prev_segment_end) {
errno = EINVAL;
munmap(mapping, span);
return -1;
}
prev_segment_end = segment_end;
void *segment_addr = (void *) (load_bias + segment_start);
protection->addr = segment_addr;
protection->size = segment_end - segment_start;
/* protection lvl of this segments will be changed after relocations are done */
void *map_result = mmap((void *) segment_addr,
segment_end - segment_start,
(PROT_READ | PROT_WRITE), MAP_PRIVATE | MAP_FIXED, fd,
page_size_round_down(ph->p_offset));
if (map_result != segment_addr) {
errno = EINVAL;
munmap(mapping, span);
return -1;
}
if ((ph->p_flags & PF_X) != 0 &&
ph->p_vaddr <= ehdr.e_entry &&
ehdr.e_entry < ph->p_vaddr + ph->p_filesz) {
entry_point_is_valid = 1;
}
if (ph->p_memsz > ph->p_filesz) {
if ((ph->p_flags & PF_W) == 0) {
errno = EINVAL;
munmap(mapping, span);
return -1;
}
uintptr_t bss_start = ph->p_vaddr + ph->p_filesz;
uintptr_t bss_map_start = page_size_round_up(bss_start);
memset((void *) (load_bias + bss_start), 0, bss_map_start - bss_start);
if (bss_map_start < segment_end) {
void *map_addr = (void *) (load_bias + bss_map_start);
map_result = mmap(map_addr, segment_end - bss_map_start,
elf_flags2mmap_flags(ph->p_flags), MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED,
-1, 0);
if (map_result != map_addr) {
errno = EINVAL;
munmap(mapping, span);
return -1;
}
}
}
}
if (close(fd) != 0) {
errno = EIO;
munmap(mapping, span);
return -1;
}
*mapped_load = (void*)load_bias;
return span;
}
void* get_dyn_segment( char *elf)
{
Elf32_Ehdr *hdr = (Elf32_Ehdr*) elf;
Elf32_Phdr *phdr = (Elf32_Phdr *)(elf + hdr->e_phoff);
int i;
for(i=0; i < hdr->e_phnum; ++i) {
if(phdr[i].p_type == PT_DYNAMIC) {
return elf + phdr[i].p_vaddr;
}
}
errno = EINVAL;
return (void*)NULL;
}
int get_symbols(char* elf_start, Elf32_Dyn *dyn, Elf32_Sym **symbols, char **strtab)
{
*symbols = NULL;
*strtab = NULL;
Elf32_Word *hash;
Elf32_Word number_of_symbols;
while(dyn->d_tag != DT_NULL)
{
if (dyn->d_tag == DT_HASH)
{
hash = (Elf32_Word*)(elf_start + dyn->d_un.d_ptr);
number_of_symbols = hash[1];
}
else if (dyn->d_tag == DT_STRTAB)
{
*strtab = elf_start + dyn->d_un.d_ptr;
}
else if (dyn->d_tag == DT_SYMTAB)
{
*symbols = (Elf32_Sym*)(elf_start + dyn->d_un.d_ptr);
}
dyn++;
}
if (symbols && strtab)
return number_of_symbols;
return -1;
}
int32_t get_offset_of_declared_symbol(const int number_of_symbols, Elf32_Sym *sym, char *strtab, const char *name)
{
Elf32_Word sym_index;
for (sym_index = 0; sym_index < number_of_symbols; sym_index++)
{
unsigned char sym_type = ELF32_ST_TYPE(sym[sym_index].st_info);
if (sym_type != STT_OBJECT
&& sym_type != STT_FUNC
&& sym_type != STT_NOTYPE)
continue;
char* sym_name = &strtab[sym[sym_index].st_name];
if (!strcmp(name, sym_name)) {
if (sym_type == STT_NOTYPE) return -1;
return sym[sym_index].st_value;
}
}
return -1;
}
int do_relocation(char *elf_start, Elf32_Rel *rel, int32_t addr)
{
Elf32_Word rel_type = ELF32_R_TYPE(rel->r_info);
int32_t *rel_point = (int32_t*)(elf_start + rel->r_offset);
switch (ELF32_R_TYPE(rel->r_info)) {
case R_386_32:
*rel_point += addr;
break;
case R_386_PC32:
*rel_point = *rel_point + addr - (int32_t)rel_point;
break;
case R_386_JMP_SLOT:
/* only relative relocation - name resolving is lazy */
*rel_point += (int32_t)elf_start;
break;
case R_386_GLOB_DAT:
*rel_point = addr;
break;
case R_386_RELATIVE:
*rel_point += (int32_t)elf_start;
break;
default:
errno = EINVAL;
return -1;
}
return 0;
}
int32_t resolve_relocation(char *elf_start, int number_of_symbols, Elf32_Sym *symbols, char *strtab,
const char* sym_name, void *(*getsym)(const char *name))
{
int32_t offset = get_offset_of_declared_symbol(number_of_symbols, symbols, strtab, sym_name);
if (offset < 0)
return (int32_t)getsym(sym_name);
return (int32_t)(elf_start + offset);
}
void* do_lazy_relocation(struct elf_ptrs *elf_ptrs, int offset)
{
const char *sym_name;
int32_t addr;
Elf32_Rel *relocation = (Elf32_Rel*)((void*)(elf_ptrs->plt_relocations) + offset);
int sym_index = ELF32_R_SYM(relocation->r_info);
sym_name = elf_ptrs->strtab + elf_ptrs->symbols[sym_index].st_name;
addr = resolve_relocation(elf_ptrs->elf_start, 1, elf_ptrs->symbols,
elf_ptrs->strtab, sym_name, elf_ptrs->getsym);
*(int32_t*)(elf_ptrs->elf_start + elf_ptrs->plt_relocations[offset].r_offset) = (int32_t)(addr);
return (void*)addr;
}
void start_lazy_relocation();
asm(".local start_lazy_relocation;"
"start_lazy_relocation:"
/* save registers on stack */
" pusha;"
/* allocate place for 2 coppied arguments and registers */
" sub $8, %esp;"
/* copy arguments to top of the stack */
" movl 44(%esp), %eax;"
" movl %eax, 4(%esp);"
" movl 40(%esp), %eax;"
" movl %eax, (%esp);"
/* first argument is pointer to the structure,
where first entry is address to do_lazy_relocation */
" movl (%eax), %eax;"
" call *%eax;"
/* pop copied arguments from the stack */
" add $8, %esp;"
/* move resolved address to 2. of the old arguments */
" movl %eax, 36(%esp);"
/* restore registers */
" popa;"
/* pop first old argument from the stack */
" add $4, %esp;"
" ret;");
int do_relocations(char *elf_start, Elf32_Dyn *dyn_start, void *(*getsym)(const char *name))
{
size_t number_of_rel_relocs = 0;
size_t number_of_jmp_relocs = 0;
size_t relent_size = 8; /* assuming 8 according to task description */
Elf32_Rel *rel_rel = NULL;
Elf32_Rel *plt_rel = NULL;
struct elf_ptrs* elf_ptrs = malloc(sizeof(struct elf_ptrs));
Elf32_Dyn *dyn = dyn_start;
while(dyn->d_tag != DT_NULL)
{
switch (dyn->d_tag) {
case DT_RELENT:
relent_size = dyn->d_un.d_val;
assert(relent_size == 8);
break;
case DT_RELSZ:
number_of_rel_relocs = dyn->d_un.d_val;
break;
case DT_PLTRELSZ:
number_of_jmp_relocs = dyn->d_un.d_val;
break;
case DT_REL:
rel_rel = (Elf32_Rel*)(elf_start + dyn->d_un.d_ptr);
break;
case DT_JMPREL:
plt_rel = (Elf32_Rel*)(elf_start + dyn->d_un.d_ptr);
break;
case DT_PLTGOT:
*(int32_t*)(elf_start + dyn->d_un.d_ptr + 4) = (int32_t)elf_ptrs;
elf_ptrs->r = (void (*)())do_lazy_relocation;
*(int32_t*)(elf_start + dyn->d_un.d_ptr + 8) =
(int32_t)start_lazy_relocation;
break;
}
dyn++;
}
elf_ptrs->elf_start = elf_start;
elf_ptrs->dyn_section = dyn_start;
elf_ptrs->plt_relocations = plt_rel;
Elf32_Sym *sym;
char* strtab;
int number_of_symbols = get_symbols(elf_start, dyn_start, &sym, &strtab);
if (number_of_symbols < 0)
return -1;
elf_ptrs->symbols = sym;
elf_ptrs->strtab = strtab;
elf_ptrs->getsym = getsym;
Elf32_Rel *rel;
const char *sym_name;
int32_t addr;
int i;
for (i=0; i < number_of_rel_relocs / relent_size; i++, rel_rel++) {
sym_name = strtab + sym[ELF32_R_SYM(rel_rel->r_info)].st_name;
addr = resolve_relocation(elf_start, number_of_rel_relocs, sym, strtab, sym_name, getsym);
if (do_relocation(elf_start, rel_rel, addr) < 0)
return -1;
}
/* for dynamic binding I have to relocate GOT.PLT entities */
for (i=0; i < number_of_jmp_relocs / relent_size; i++, plt_rel++) {
if (do_relocation(elf_start, plt_rel, 0) < 0)
return -1;
}
return (number_of_rel_relocs + number_of_jmp_relocs) / relent_size;
}