-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathApp.py
88 lines (74 loc) · 3.39 KB
/
App.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from dotenv import load_dotenv
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.callbacks import get_openai_callback
import base64
from email.mime.text import MIMEText
from google_auth_oauthlib.flow import InstalledAppFlow
from googleapiclient.discovery import build
from requests import HTTPError
import mail
import Translate
load_dotenv()
def main():
st.set_page_config(page_title="Ask your PDF")
st.header("Ask your PDF 💬")
# upload file
pdf_docs = st.file_uploader("Upload your PDF", type="pdf", accept_multiple_files=True)
# extract the text
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
# split into chunks
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_text(text)
# Check if chunks is not empty before proceeding
if chunks:
# create embeddings
embeddings = OpenAIEmbeddings()
knowledge_base = Chroma.from_texts(chunks, embeddings)
# show user input
user_question = st.text_input("Ask a question about your PDF:")
if user_question:
docs = knowledge_base.similarity_search(user_question)
llm = OpenAI()
chain = load_qa_chain(llm, chain_type="stuff")
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=user_question)
print(cb)
st.write(response)
st.title("Text Translator")
want_translation = st.selectbox("Do you want to translate to any language?", ("Yes", "No"), index=None, placeholder="Choose an option")
if want_translation == "Yes":
st.header("Text Translator")
from_language = "English"
to_language = st.selectbox("Translate to", ("English", "French", "German", "Spanish", "Tamil", "Telugu", "Kannada", "Hindi"))
if from_language == to_language:
st.warning("Please select different languages for translation.")
st.stop()
if from_language and to_language and text:
translated = Translate.generate_translation(to_language, response)
translated_response = translated['translatedText'].strip()
st.write(translated_response)
want_email = st.selectbox("Do you want a copy of this to be emailed?", ("Yes", "No"), index=None, placeholder="Choose an option")
if want_email == "Yes":
email_input = st.text_input('Enter Email Address').strip()
if email_input:
if want_translation == "Yes":
mail.send_email(email=email_input ,subject="PDF Doc Searcher Response", body=translated_response)
else:
mail.send_email(email=email_input ,subject="PDF Doc Searcher Response", body=response)
if __name__ == '__main__':
main()