forked from indrakumarprajapat/tvarit.com
-
Notifications
You must be signed in to change notification settings - Fork 0
/
training.php
96 lines (79 loc) · 4.89 KB
/
training.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<script src="js/navigationDE.js"></script>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-143837547-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'UA-143837547-1');
</script>
<meta charset="utf-8">
<meta content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=0" name="viewport" />
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" />
<meta name="site" content="tvarit.com" />
<meta name="keywords"
content="SPS – Smart Production Solutions, Nuremberg, NürnbergMesse, Components, Control Technology, Drive Systems, Electromechanical Components, Human-Machine-Interface Devices, Industrial Communication, Industrial Software, Interface Technology, IPCs, Motion Control, Peripheral Equipment, Sensor Technology, " />
<meta name="description"
content="Tvarit AI is the best solution for smart manufacturing, smart machines and digital transformation" />
<meta name="keywords"
content="machine learning, free, no credit card, big data, machine learning, ml, machine learning as a service, machine learning API, API, datasets, models, decision trees, predictive models, predictions, fast predictions, evaluation, evaluate predictive models, ensembles, random decision forest, boosted trees, gradient boosted trees, gradient boosting, boosting ensembles, isolation forest, anomaly detector, anomaly score, clustering, k-means, g-means, cluster, centroids, linear regression, regression, logistic regression, lr, topic, topic modeling, topic distributions, PCA, principal component analysis, text analysis, LDA, Latent Dirichlet Allocation, partial dependence plot, scatter plot, time series forecasting, timeseries, forecast, trends, deepnets, deep learning, deep neural networks, neural network, neural networks, automl, automatic optimization, optiml, fusion, easy, model gallery, workflows, flatline, whizzml, dsl, domain-specific language, bindings, library, amazon echo, alexa, mac, desktop" />
<!-- Favicons -->
<link rel="apple-touch-icon" href="./assets/img/kit/free/apple-icon.png">
<link rel="icon" href="./img/favicon.png">
<title>Training</title>
<link rel="stylesheet" href="css/bootstrap.min.css">
<link rel="stylesheet" href="css/style.css">
<link rel="stylesheet" href="css/responsive.css">
<link rel="stylesheet" href="css/flickity.css">
<link rel="stylesheet" href="css/animate.css">
<link
href="https://fonts.googleapis.com/css?family=Raleway:100,100i,200,200i,300,300i,400,400i,500,500i,600,600i,700,700i,800,800i,900,900i"
rel="stylesheet">
<link href="https://fonts.googleapis.com/css?family=Roboto+Condensed:300i,400,400i,700,700i" rel="stylesheet">
<link rel="stylesheet" href="https://use.fontawesome.com/releases/v5.6.3/css/all.css"
integrity="sha384-UHRtZLI+pbxtHCWp1t77Bi1L4ZtiqrqD80Kn4Z8NTSRyMA2Fd33n5dQ8lWUE00s/" crossorigin="anonymous">
<link href="https://unpkg.com/[email protected]/dist/css/ionicons.min.css" rel="stylesheet">
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
<![endif]-->
</head>
<body>
<script type="text/javascript" src="https://secure.perk0mean.com/js/173652.js"></script>
<noscript><img alt="" src="https://secure.perk0mean.com/173652.png" style="display:none;" /></noscript>
<!------------------------ main menu start ---------------------->
<?php
include 'header.php';
?>
<!------------------------ main menu end ------------------------>
<!------------------------ google docs ------------------------>
<div class="section-padding">
<div class="container">
<iframe style="width:100%;height:100vh;"
src="https://docs.google.com/document/d/e/2PACX-1vTsCdto4lF1vxliF2-SrdGkvY8q7jYFvAr4pwE-LV9gcb2uAPYYLneDPJBGzmshHfrt-ax6TRxp1ftG/pub?embedded=true">
</iframe>
</div>
</div>
<!------------------------ google docs ------------------------>
<!------------------------footer start --------------------->
<?php
include 'footer.php'
?>
<!------------------------footer end --------------------->
<!-- script start -->
<script src="js/jquery.min.js"></script>
<script src="js/popper.min.js"></script>
<script src="js/bootstrap.min.js"></script>
<script src="js/jquery.easing.min.js"></script>
<script src="js/SmoothScroll.js"></script>
<script src="js/flickity.pkgd.min.js"></script>
<script src="js/readmore.js"></script>
<script src="js/counting.js"></script>
<script src="js/script.js"></script>
<script src="js/parallax.js"></script>
</body>
</html>