forked from king-yyf/CMeKG_tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmedical_ner.py
186 lines (168 loc) · 7.9 KB
/
medical_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
# coding:utf-8
import codecs
import torch
from torch.autograd import Variable
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
import json
from utils import load_vocab
from ner_constant import *
from model_ner import BERT_LSTM_CRF
import os
class medical_ner(object):
def __init__(self):
self.NEWPATH = '/Users/yangyf/workplace/model/medical_ner/model.pkl'
self.vocab = load_vocab('/Users/yangyf/workplace/model/medical_ner/vocab.txt')
self.vocab_reverse = {v: k for k, v in self.vocab.items()}
self.model = BERT_LSTM_CRF('/Users/yangyf/workplace/model/medical_ner', tagset_size, 768, 200, 2,
dropout_ratio=0.5, dropout1=0.5, use_cuda=use_cuda)
if use_cuda:
self.model.to(device)
def from_input(self, input_str):
raw_text = []
textid = []
textmask = []
textlength = []
text = ['[CLS]'] + [x for x in input_str] + ['[SEP]']
raw_text.append(text)
cur_len = len(text)
# raw_textid = [self.vocab[x] for x in text] + [0] * (max_length - cur_len)
raw_textid = [self.vocab[x] for x in text if self.vocab.__contains__(x)] + [0] * (max_length - cur_len)
textid.append(raw_textid)
raw_textmask = [1] * cur_len + [0] * (max_length - cur_len)
textmask.append(raw_textmask)
textlength.append([cur_len])
textid = torch.LongTensor(textid)
textmask = torch.LongTensor(textmask)
textlength = torch.LongTensor(textlength)
return raw_text, textid, textmask, textlength
def from_txt(self, input_path):
raw_text = []
textid = []
textmask = []
textlength = []
with open(input_path, 'r', encoding='utf-8') as f:
for line in f.readlines():
if len(line.strip())==0:
continue
if len(line) > 448:
line = line[:448]
temptext = ['[CLS]'] + [x for x in line[:-1]] + ['[SEP]']
cur_len = len(temptext)
raw_text.append(temptext)
tempid = [self.vocab[x] for x in temptext[:cur_len]] + [0] * (max_length - cur_len)
textid.append(tempid)
textmask.append([1] * cur_len + [0] * (max_length - cur_len))
textlength.append([cur_len])
textid = torch.LongTensor(textid)
textmask = torch.LongTensor(textmask)
textlength = torch.LongTensor(textlength)
return raw_text, textid, textmask, textlength
def split_entity_input(self,label_seq):
entity_mark = dict()
entity_pointer = None
for index, label in enumerate(label_seq):
#print(f"before: {label_seq}")
if label.split('-')[-1]=='B':
category = label.split('-')[0]
entity_pointer = (index, category)
entity_mark.setdefault(entity_pointer, [label])
elif label.split('-')[-1]=='M':
if entity_pointer is None: continue
if entity_pointer[1] != label.split('-')[0]: continue
entity_mark[entity_pointer].append(label)
elif label.split('-')[-1]=='E':
if entity_pointer is None: continue
if entity_pointer[1] != label.split('-')[0]: continue
entity_mark[entity_pointer].append(label)
else:
entity_pointer = None
# print(entity_mark)
return entity_mark
def predict_sentence(self, sentence):
tag_dic = {"d": "疾病", "b": "身体", "s": "症状", "p": "医疗程序", "e": "医疗设备", "y": "药物", "k": "科室",
"m": "微生物类", "i": "医学检验项目"}
if sentence == '':
print("输入为空!请重新输入")
return
if len(sentence) > 448:
print("输入句子过长,请输入小于148的长度字符!")
sentence = sentence[:448]
raw_text, test_ids, test_masks, test_lengths = self.from_input(sentence)
test_dataset = TensorDataset(test_ids, test_masks, test_lengths)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=1)
self.model.load_state_dict(torch.load(self.NEWPATH, map_location=device))
self.model.eval()
for i, dev_batch in enumerate(test_loader):
sentence, masks, lengths = dev_batch
batch_raw_text = raw_text[i]
sentence, masks, lengths = Variable(sentence), Variable(masks), Variable(lengths)
if use_cuda:
sentence = sentence.to(device)
masks = masks.to(device)
predict_tags = self.model(sentence, masks)
predict_tags.tolist()
predict_tags = [i2l_dic[t.item()] for t in predict_tags[0]]
predict_tags = predict_tags[:len(batch_raw_text)]
pred = predict_tags[1:-1]
raw_text = batch_raw_text[1:-1]
entity_mark = self.split_entity_input(pred)
entity_list = {}
if entity_mark is not None:
for item, ent in entity_mark.items():
# print(item, ent)
entity = ''
index, tag = item[0], item[1]
len_entity = len(ent)
for i in range(index, index + len_entity):
entity = entity + raw_text[i]
entity_list[tag_dic[tag]] = entity
# print(entity_list)
return entity_list
def predict_file(self, input_file, output_file):
tag_dic = {"d": "疾病", "b": "身体", "s": "症状", "p": "医疗程序", "e": "医疗设备", "y": "药物", "k": "科室",
"m": "微生物类", "i": "医学检验项目"}
raw_text, test_ids, test_masks, test_lengths = self.from_txt(input_file)
test_dataset = TensorDataset(test_ids, test_masks, test_lengths)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=1)
self.model.load_state_dict(torch.load(self.NEWPATH, map_location=device))
self.model.eval()
op_file = codecs.open(output_file, 'w', 'utf-8')
for i, dev_batch in enumerate(test_loader):
sentence, masks, lengths = dev_batch
batch_raw_text = raw_text[i]
sentence, masks, lengths = Variable(sentence), Variable(masks), Variable(lengths)
if use_cuda:
sentence = sentence.to(device)
masks = masks.to(device)
predict_tags = self.model(sentence, masks)
predict_tags.tolist()
predict_tags = self.model(sentence, masks)
predict_tags.tolist()
predict_tags = [i2l_dic[t.item()] for t in predict_tags[0]]
predict_tags = predict_tags[:len(batch_raw_text)]
pred = predict_tags[1:-1]
raw_text = batch_raw_text[1:-1]
entity_mark = self.split_entity_input(pred)
entity_list = {}
if entity_mark is not None:
for item, ent in entity_mark.items():
entity = ''
index, tag = item[0], item[1]
len_entity = len(ent)
for i in range(index, index + len_entity):
entity = entity + raw_text[i]
entity_list[tag_dic[tag]] = entity
op_file.write("".join(raw_text))
op_file.write("\n")
op_file.write(json.dumps(entity_list, ensure_ascii=False))
op_file.write("\n")
op_file.close()
print('处理完成!')
print("结果保存至 {}".format(output_file))
if __name__ == "__main__":
sentence = "抑郁症受遗传的影响。在抑郁症青少年中,约25%~33%的家庭有一级亲属的发病史,是没有抑郁症青少年家庭发病的2倍。"
my_pred = medical_ner()
res = my_pred.predict_sentence(sentence)
print("---")
print(res)