forked from udacity/AIND-VUI-Capstone
-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathtrain_utils.py
80 lines (68 loc) · 3.13 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
Defines a functions for training a NN.
"""
from data_generator import AudioGenerator
import _pickle as pickle
from keras import backend as K
from keras.models import Model
from keras.layers import (Input, Lambda)
from keras.optimizers import SGD
from keras.callbacks import ModelCheckpoint
import os
def ctc_lambda_func(args):
y_pred, labels, input_length, label_length = args
return K.ctc_batch_cost(labels, y_pred, input_length, label_length)
def add_ctc_loss(input_to_softmax):
the_labels = Input(name='the_labels', shape=(None,), dtype='float32')
input_lengths = Input(name='input_length', shape=(1,), dtype='int64')
label_lengths = Input(name='label_length', shape=(1,), dtype='int64')
output_lengths = Lambda(input_to_softmax.output_length)(input_lengths)
# CTC loss is implemented in a lambda layer
loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc')(
[input_to_softmax.output, the_labels, output_lengths, label_lengths])
model = Model(
inputs=[input_to_softmax.input, the_labels, input_lengths, label_lengths],
outputs=loss_out)
return model
def train_model(input_to_softmax,
pickle_path,
save_model_path,
train_json='train_corpus.json',
valid_json='valid_corpus.json',
minibatch_size=20,
spectrogram=True,
mfcc_dim=13,
optimizer=SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True, clipnorm=5),
epochs=20,
verbose=1,
sort_by_duration=False,
max_duration=10.0):
# create a class instance for obtaining batches of data
audio_gen = AudioGenerator(minibatch_size=minibatch_size,
spectrogram=spectrogram, mfcc_dim=mfcc_dim, max_duration=max_duration,
sort_by_duration=sort_by_duration)
# add the training data to the generator
audio_gen.load_train_data(train_json)
audio_gen.load_validation_data(valid_json)
# calculate steps_per_epoch
num_train_examples=len(audio_gen.train_audio_paths)
steps_per_epoch = num_train_examples//minibatch_size
# calculate validation_steps
num_valid_samples = len(audio_gen.valid_audio_paths)
validation_steps = num_valid_samples//minibatch_size
# add CTC loss to the NN specified in input_to_softmax
model = add_ctc_loss(input_to_softmax)
# CTC loss is implemented elsewhere, so use a dummy lambda function for the loss
model.compile(loss={'ctc': lambda y_true, y_pred: y_pred}, optimizer=optimizer)
# make results/ directory, if necessary
if not os.path.exists('results'):
os.makedirs('results')
# add checkpointer
checkpointer = ModelCheckpoint(filepath='results/'+save_model_path, verbose=0)
# train the model
hist = model.fit_generator(generator=audio_gen.next_train(), steps_per_epoch=steps_per_epoch,
epochs=epochs, validation_data=audio_gen.next_valid(), validation_steps=validation_steps,
callbacks=[checkpointer], verbose=verbose)
# save model loss
with open('results/'+pickle_path, 'wb') as f:
pickle.dump(hist.history, f)