forked from kpchamp/SINDySR3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsindy_forcing.py
212 lines (184 loc) · 7.33 KB
/
sindy_forcing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import warnings
from numpy import isscalar
from numpy import newaxis
from scipy.integrate import odeint
from scipy.interpolate import interp1d
from scipy.linalg import LinAlgWarning
from sklearn.exceptions import ConvergenceWarning
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import PolynomialFeatures
from pysindy import SINDy
from pysindy.differentiation import FiniteDifference
from pysindy.optimizers import SINDyOptimizer
from pysindy.utils.base import drop_nan_rows
from pysindy.utils.base import validate_input
from sr3_forcing import SR3Forcing
class SINDyForcing(SINDy):
"""
Model object for SINDy with parameterized forcing.
Parameters
----------
n_forcing_params : int
The number of parameters in the parameterized forcing.
forcing_functions : list of functions
List of functions that make up the forcing terms. Each function
should take two parameters: (1) an array of the forcing
parameters and (2) a (time-dependent) forcing input.
feature_library : feature library object, optional
Default is polynomial features of degree 2.
differentiation_method : differentiation object, optional
Method for differentiating the data. This must be an object that
extends the sindy.differentiation_methods.BaseDifferentiation class.
Default is centered difference.
feature_names : list of string, length n_input_features, optional
Names for the input features. If None, will use ['x0','x1',...].
discrete_time : boolean, optional (default False)
If True, dynamical system is treated as a map. Rather than predicting
derivatives, the right hand side functions step the system forward by
one time step. If False, dynamical system is assumed to be a flow
(right hand side functions predict continuous time derivatives).
n_jobs : int, optional (default 1)
The number of parallel jobs to use when fitting, predicting with, and
scoring the model.
Attributes
----------
model : sklearn.pipeline.Pipeline object
The fitted SINDy model.
"""
def __init__(
self,
n_forcing_params,
forcing_functions,
feature_library=PolynomialFeatures(),
differentiation_method=FiniteDifference(),
feature_names=None,
discrete_time=False,
**optimizer_kws,
):
optimizer = SR3Forcing(n_forcing_params, forcing_functions, **optimizer_kws)
super(SINDyForcing, self).__init__(
optimizer=optimizer,
feature_library=feature_library,
differentiation_method=differentiation_method,
feature_names=feature_names,
discrete_time=discrete_time,
)
def fit(
self,
x,
t=1,
x_dot=None,
forcing_input=None,
initial_forcing_params=None,
multiple_trajectories=False,
unbias=True,
quiet=False,
):
if multiple_trajectories:
x, x_dot = self.process_multiple_trajectories(x, t, x_dot)
else:
x = validate_input(x, t)
if self.discrete_time:
if x_dot is None:
x_dot = x[1:]
x = x[:-1]
else:
x_dot = validate_input(x)
else:
if x_dot is None:
x_dot = self.differentiation_method(x, t)
else:
x_dot = validate_input(x_dot, t)
# Drop rows where derivative isn't known
x, x_dot = drop_nan_rows(x, x_dot)
steps = [("features", self.feature_library), ("model", self.optimizer)]
self.model = Pipeline(steps)
action = "ignore" if quiet else "default"
with warnings.catch_warnings():
warnings.filterwarnings(action, category=ConvergenceWarning)
warnings.filterwarnings(action, category=LinAlgWarning)
warnings.filterwarnings(action, category=UserWarning)
self.model.fit(
x,
x_dot,
model__forcing_input=forcing_input,
model__initial_forcing_params=initial_forcing_params,
)
self.n_input_features_ = self.model.steps[0][1].n_input_features_
self.n_output_features_ = self.model.steps[0][1].n_output_features_
if self.feature_names is None:
feature_names = []
for i in range(self.n_input_features_):
feature_names.append("x" + str(i))
self.feature_names = feature_names
return self
def predict(self, x, forcing_input, multiple_trajectories=False):
"""
Predict the time derivatives using the SINDy model.
Parameters
----------
x: array-like or list of array-like, shape (n_samples, n_input_features)
Samples.
multiple_trajectories: boolean, optional (default False)
If True, x contains multiple trajectories and must be a list of
data from each trajectory. If False, x is a single trajectory.
Returns
-------
x_dot: array-like or list of array-like, shape (n_samples, n_input_features)
Predicted time derivatives
"""
if hasattr(self, "model"):
if multiple_trajectories:
x = [validate_input(xi) for xi in x]
return [self.model.predict(xi) for xi in x]
else:
x = validate_input(x)
if hasattr(self, "model"):
return self.model.predict(x, forcing_input=forcing_input)
else:
raise NotFittedError("SINDy model must be fit before predict can be called")
def simulate(
self,
x0,
t,
forcing_input,
integrator=odeint,
stop_condition=None,
**integrator_kws,
):
if self.discrete_time:
if not isinstance(t, int):
raise ValueError(
"For discrete time model, t must be an integer (indicating"
"the number of steps to predict)"
)
x = zeros((t, self.n_input_features_))
x[0] = x0
for i in range(1, t):
x[i] = self.predict(x[i - 1 : i], forcing_input[i - 1 : i])
if stop_condition is not None and stop_condition(x[i]):
return x[: i + 1]
return x
else:
if isscalar(t):
raise ValueError(
"For continuous time model, t must be an array of time"
" points at which to simulate"
)
if t.shape[0] != forcing_input.shape[0]:
raise ArgumentError("Time and forcing input must be same length")
if forcing_input.ndim == 1:
forcing_func = interp1d(
t,
forcing_input[:, newaxis],
axis=0,
bounds_error=False,
fill_value="extrapolate",
)
else:
forcing_func = interp1d(
t, forcing_input, axis=0, bounds_error=False, fill_value="extrapolate"
)
def rhs(x, t):
return self.predict(x[newaxis, :], forcing_func(t))[0]
return integrator(rhs, x0, t, **integrator_kws)