CurrentModule = GromovWitten
DocTestSetup = quote
using GromovWitten
end
In this module, we compute the solution of the system
we compute the coefficients
Consider the Graph with vertex contribution
julia> G = FeynmanGraph( [(1, 2), (2, 3), (3, 1)])
FeynmanGraph([(1, 2), (2, 3), (3, 1)])
We then define the FeynmanIntegral type.
julia> F=FeynmanIntegral(G)
FeynmanIntegral(FeynmanGraph([(1, 2), (2, 3), (3, 1)]), Dict{Symbol, Dict{Vector{Int64}, Nemo.QQMPolyRingElem}}(), (Multivariate polynomial ring in 9 variables over QQ, Nemo.QQMPolyRingElem[x[1], x[2], x[3]], Nemo.QQMPolyRingElem[q[1], q[2], q[3]], Nemo.QQMPolyRingElem[z[1], z[2], z[3]]))
We compute the sum of all Feynman Integral of degree up to
julia> weightmax=8;
julia> m = number_of_monomial(weightmax)
10
We computed then the Feynman Integral sum up to the degree
julia> Iq=substitute(feynman_integral_degree_sum(F, m,g))
56250*q[1]^20 + 121581//4*q[1]^18 + 18480*q[1]^16 + 8330*q[1]^14 + 4428*q[1]^12 + 3075//2*q[1]^10 + 556*q[1]^8 + 117*q[1]^6 + 15*q[1]^4 + 1//4*q[1]^2
We can now express the Feynman Integral Iq in term of Eisenstein series
we compute quasimodular form of Iq :
julia> quasimodularity_form(Iq,weightmax)
(1//6912, E2^3 + 2*E2^2*E4 - 3*E2*E4 - 4*E2*E6 + 2*E4^2 + 2*E6)
Consider the Graph with loop at the vertex 1 .
julia> G = FeynmanGraph( [(1, 1),(1, 2), (2, 3), (3, 1)])
FeynmanGraph( [(1, 2), (2, 3), (3, 1)])
We then define the FeynmanIntegral type.
julia> F=FeynmanIntegral(G)
FeynmanIntegral(FeynmanGraph( [(1, 1),(1, 2), (2, 3), (3, 1)]), Dict{Symbol, Dict{Vector{Int64}, Nemo.QQMPolyRingElem}}(), (Multivariate polynomial ring in 10 variables over QQ, Nemo.QQMPolyRingElem[x[1], x[2], x[3]], Nemo.QQMPolyRingElem[q[1], q[2], q[3], q[4]], Nemo.QQMPolyRingElem[z[1], z[2],z[3]]))
We compute the sum of all Feynman Integral of degree up to
julia> weightmax=8;
julia> m=number_of_monomial(weightmax)
10
We computed then the Feynman Integral sum up to the degree
julia> Iq=substitute(feynman_integral_degree_sum(F, m))
67500*q[1]^20 + 36774*q[1]^18 + 20640*q[1]^16 + 9996*q[1]^14 + 4320*q[1]^12 + 1650*q[1]^10 + 456*q[1]^8 + 90*q[1]^6 + 6*q[1]^4
We can now express the Feynman Integral Iq in term of Eisenstein series
we compute quasimodular form of Iq :
julia> quasimodularity_form(Iq,weightmax)
(1//6912, E2^4 - E2^3 - 3*E2^2*E4 + 3*E2*E4 + 2*E2*E6 - 2*E6)