-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathscript_hyperparam_opt.py
232 lines (178 loc) · 7.77 KB
/
script_hyperparam_opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""
script_hyperparam_opt.py
Created by limsi on 23/03/2020
"""
import argparse
import datetime as dte
import os
import tensorflow as tf
import numpy as np
import configs
from libs.hyperparam_opt import HyperparamOptManager
from models import model_factory
from libs.utils import recreate_folder
K = tf.keras.backend
if __name__ == "__main__":
def get_args():
"""Returns settings from command line."""
parser = argparse.ArgumentParser(description="Data download configs")
parser.add_argument(
"model_name",
metavar="m",
type=str,
nargs="?",
default="rnf",
help="Model Name")
parser.add_argument(
"expt_name",
metavar="e",
type=str,
nargs="?",
default="power",
choices=configs.VALID_EXPT_NAMES,
help="Experiment Name. Default={}".format(",".join(configs.VALID_EXPT_NAMES)))
parser.add_argument(
"use_gpu",
metavar="g",
type=str,
nargs="?",
choices=["yes", "no"],
default="yes",
help="Whether to use gpu for training.")
parser.add_argument(
"restart_hyperparam_opt",
metavar="o",
type=str,
nargs="?",
choices=["yes", "no"],
default="yes",
help="Whether to re-run hyperparameter optimisation from scratch.")
args = parser.parse_known_args()[0]
return args.model_name, args.expt_name, args.use_gpu == "yes", args.restart_hyperparam_opt
model_name, expt_name, use_gpu, restart_opt = get_args()
######################################
# Defaults
hyperparam_iterations = 50
early_stopping = 1000 # disables early stopping here
######################################
print()
print("# -----------------------------------------------------------")
print("# Commencing hyperparameter optimisation")
print("# -----------------------------------------------------------")
print()
print("*** Setting devices ***")
gpu_devices = tf.config.list_physical_devices('GPU')
print("Num GPUs={}".format(len(gpu_devices)))
if use_gpu:
print("Defaulting to {}".format(gpu_devices[0]))
tf.config.set_visible_devices(gpu_devices[0], 'GPU')
else:
print("Using CPU only")
my_devices = tf.config.list_physical_devices(device_type='CPU')
tf.config.set_visible_devices(devices=my_devices, device_type='CPU')
print("*** Creating datasets ***")
df = configs.load_dataset(expt_name)
data_formatter = configs.get_dataformatter(expt_name, model_name)
print("train-valid-test splits")
train, valid, test = data_formatter.split_data(df)
print("*** Initialising hyperparam manager ***")
param_ranges = configs.get_default_hyperparams(model_name)
fixed_params = data_formatter.get_experiment_params()
model_folder = os.path.join(configs.MODEL_PATH, expt_name, model_name)
opt_manager = HyperparamOptManager(param_ranges, fixed_params, model_folder)
success = opt_manager.load_results()
if success and not restart_opt:
print("Loaded results from previous training")
else:
print("Creating new hyperparameter optimisation")
opt_manager.clear()
print("*** Commencing hyperparameter optimisation ***")
print('Batching data')
batcher = configs.get_batcher(model_name)
col_defn = data_formatter.get_column_definition()
time_steps = fixed_params['total_time_steps']
train_batches = batcher.batch(train, col_defn, time_steps)
valid_batches = batcher.batch(valid, col_defn, time_steps)
test_batches = batcher.batch(test, col_defn, time_steps)
# unpack
train_inputs, train_outputs, train_flags = train_batches
valid_inputs, valid_outputs, valid_flags = valid_batches
test_inputs, test_outputs, test_flags = test_batches
while len(opt_manager.results.columns) < hyperparam_iterations:
K.clear_session()
print()
print("# -----------------------------------------------------------")
print("# Running hyperparam optimisation {} of {} for {}".format(
len(opt_manager.results.columns) + 1, hyperparam_iterations, expt_name))
print("# -----------------------------------------------------------")
print()
params = opt_manager.get_next_parameters()
model = model_factory.make_model(model_name, params)
tmp_folder = os.path.join(model_folder, 'tmp')
tmp_model = os.path.join(tmp_folder, "model")
callbacks = [
tf.keras.callbacks.EarlyStopping(
monitor='val_loss',
patience=early_stopping,
min_delta=1e-4),
tf.keras.callbacks.ModelCheckpoint(
filepath=tmp_model,
monitor='val_loss',
save_best_only=True,
save_weights_only=True),
tf.keras.callbacks.TerminateOnNaN()
]
model.fit(
x=train_inputs,
y=train_outputs,
sample_weight=train_flags,
epochs=params['num_epochs'],
batch_size=params['minibatch_size'],
validation_data=(valid_inputs, valid_outputs, valid_flags),
callbacks=callbacks,
shuffle=True,
use_multiprocessing=True,
workers=params['multiprocessing_workers'])
try:
model.load_weights(tmp_model)
val_loss = model.evaluate(valid_inputs, valid_outputs, sample_weight=valid_flags)
recreate_folder(tmp_folder) # ensures that it is clear for next run
except:
print('Cannot load model: {}'.format(tmp_model))
val_loss = np.nan
if np.allclose(val_loss, 0.) or np.isnan(val_loss):
# Set all invalid losses to infinity.
# N.b. val_loss only becomes 0. when the weights are nan.
print("Skipping bad configuration....")
val_loss = np.inf
opt_manager.update_score(params, val_loss, model)
print("*** Loading final model ***")
K.clear_session()
best_params = opt_manager.get_best_params()
best_valid_score = opt_manager.best_score
# Model loading
model = model_factory.make_model(model_name, best_params)
# required to initialise some states to load model
basic_inputs, basic_outputs, _ = batcher.batch(train.iloc[:time_steps*2, :], # use small datasets
col_defn, time_steps)
model.train_on_batch(basic_inputs, basic_outputs)
model.load_weights(opt_manager.checkpoint_path)
# Check to make sure weights are correctly loaded
val_loss = model.evaluate(valid_inputs, valid_outputs, sample_weight=valid_flags)
np.testing.assert_allclose(val_loss, best_valid_score, rtol=1e-6, atol=1e-6)
print("Hyperparam optimisation completed @ {}".format(dte.datetime.now()))
print("Best validation loss = {}".format(val_loss))
print("Params:")
for k in best_params:
print(k, " = ", best_params[k])
print()
# Out of sample testing
print("*** Computing Raw MSEs ***")
def calc_mse(valid_inputs, valid_outputs, valid_flags):
preds = model.predict(valid_inputs)
output_size = valid_outputs.shape[-1]
mse = np.mean((preds[..., :output_size] - valid_outputs) ** 2 * valid_flags[..., np.newaxis]) \
/ np.mean(valid_flags[..., np.newaxis])
return mse
print("Valid MSE={}".format(calc_mse(valid_inputs, valid_outputs, valid_flags)))
print("Test MSE={}".format(calc_mse(test_inputs, test_outputs, test_flags))) # This tests in encoder/decoder mode