-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathGTAD_models.py
300 lines (257 loc) · 11.3 KB
/
GTAD_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# -*- coding: utf-8 -*-
import math
import numpy as np
import torch
import torch.nn as nn
from gtad_lib.align import Align1DLayer
# dynamic graph from knn
def knn(x, y=None, k=10):
"""
:param x: BxCxN
:param y: BxCxM
:param k: scalar
:return: BxMxk
"""
if y is None:
y = x
# logging.info('Size in KNN: {} - {}'.format(x.size(), y.size()))
inner = -2 * torch.matmul(y.transpose(2, 1), x)
xx = torch.sum(x ** 2, dim=1, keepdim=True)
yy = torch.sum(y ** 2, dim=1, keepdim=True)
pairwise_distance = -xx - inner - yy.transpose(2, 1)
_, idx = pairwise_distance.topk(k=k, dim=-1) # (batch_size, num_points, k)
return idx
# get graph feature
def get_graph_feature(x, prev_x=None, k=20, idx_knn=None, r=-1, style=0):
"""
:param x:
:param prev_x:
:param k:
:param idx:
:param r: output downsampling factor (-1 for no downsampling)
:param style: method to get graph feature
:return:
"""
batch_size = x.size(0)
num_points = x.size(2) # if prev_x is None else prev_x.size(2)
x = x.view(batch_size, -1, num_points)
if idx_knn is None:
idx_knn = knn(x=x, y=prev_x, k=k) # (batch_size, num_points, k)
else:
k = idx_knn.shape[-1]
# print(idx_knn.shape)
device = x.device # torch.device('cuda')
idx_base = torch.arange(0, batch_size, device=device).view(-1, 1, 1) * num_points
idx = idx_knn + idx_base
idx = idx.view(-1)
_, num_dims, _ = x.size()
x = x.transpose(2, 1).contiguous() # (batch_size, num_points, num_dims) -> (batch_size*num_points, num_dims)
feature = x.view(batch_size * num_points, -1)[idx, :]
feature = feature.view(batch_size, num_points, k, num_dims)
x = x.view(batch_size, num_points, 1, num_dims).repeat(1, 1, k, 1)
if style == 0: # use offset as feature
feature = torch.cat((feature - x, x), dim=3).permute(0, 3, 1, 2)
elif style == 1: # use feature as feature
feature = torch.cat((feature, x), dim=3).permute(0, 3, 1, 2)
else: # style == 2:
feature = feature.permute(0,3,1,2)
# downsample if needed
if r != -1:
select_idx = torch.from_numpy(np.random.choice(feature.size(2), feature.size(2) // r,
replace=False)).to(device=device)
feature = feature[:, :, select_idx, :]
return feature, idx_knn
# basic block
class GCNeXt(nn.Module):
def __init__(self, channel_in, channel_out, k=3, norm_layer=None, groups=32, width_group=4, idx=None):
super(GCNeXt, self).__init__()
self.k = k
self.groups = groups
if norm_layer is None:
norm_layer = nn.BatchNorm1d
width = width_group * groups
self.tconvs = nn.Sequential(
nn.Conv1d(channel_in, width, kernel_size=1), nn.ReLU(True),
nn.Conv1d(width, width, kernel_size=3, groups=groups, padding=1), nn.ReLU(True),
nn.Conv1d(width, channel_out, kernel_size=1),
) # temporal graph
self.sconvs = nn.Sequential(
nn.Conv2d(channel_in * 2, width, kernel_size=1), nn.ReLU(True),
nn.Conv2d(width, width, kernel_size=1, groups=groups), nn.ReLU(True),
nn.Conv2d(width, channel_out, kernel_size=1),
) # semantic graph
self.relu = nn.ReLU(True)
self.idx_list = idx
def forward(self, x):
identity = x # residual
tout = self.tconvs(x) # conv on temporal graph
x_f, idx = get_graph_feature(x, k=self.k, style=1) # (bs,ch,100) -> (bs, 2ch, 100, k)
sout = self.sconvs(x_f) # conv on semantic graph
sout = sout.max(dim=-1, keepdim=False)[0] # (bs, ch, 100, k) -> (bs, ch, 100)
out = tout + identity + sout # fusion
if not self.idx_list is None:
self.idx_list.append(idx)
return self.relu(out)
class GraphAlign(nn.Module):
def __init__(self, k=3, t=100, d=100, bs=64, samp=0, style=0):
super(GraphAlign, self).__init__()
self.k = k
self.t = t
self.d = d
self.bs = bs
self.style = style
self.expand_ratio = 0.5
self.resolution = 32
self.align_inner = Align1DLayer(self.resolution, samp)
self.align_context = Align1DLayer(4)
self._get_anchors()
def forward(self, x, index):
bs, ch, t = x.shape
if not self.anchors.is_cuda: # run once
self.anchors = self.anchors.cuda()
anchor = self.anchors[:self.anchor_num * bs, :] # (bs*tscale*tscal, 3)
# print('first value in anchor is', anchor[0])
feat_inner = self.align_inner(x, anchor) # (bs*tscale*tscal, ch, resolution)
if self.style == 1: # use last layer neighbours
feat, _ = get_graph_feature(x, k=self.k, style=2) # (bs,ch,100) -> (bs, ch, 100, k)
feat = feat.mean(dim=-1, keepdim=False) # (bs. 2*ch, 100)
feat_context = self.align_context(feat, anchor) # (bs*tscale*tscal, ch, resolution//2)
feat = torch.cat((feat_inner,feat_context), dim=2).view(bs, t, t, -1)
elif self.style == 2: # use all layers neighbour
feat, _ = get_graph_feature(x, k=self.k, style=2, idx_knn=index) # (bs,ch,100) -> (bs, ch, 100, k)
feat = feat.mean(dim=-1, keepdim=False) # (bs. 2*ch, 100)
feat_context = self.align_context(feat, anchor) # (bs*tscale*tscal, ch, resolution//2)
feat = torch.cat((feat_inner,feat_context), dim=2).view(bs, t, t, -1)
else:
feat = torch.cat((feat_inner,), dim=2).view(bs, t, t, -1)
# print('shape after align is', feat_context.shape)
return feat.permute(0, 3, 2, 1) # (bs,2*ch*(-1),t,t)
def _get_anchors(self):
anchors = []
for k in range(self.bs):
for start_index in range(self.t):
for duration_index in range(self.d):
if start_index + duration_index < self.t:
p_xmin = start_index
p_xmax = start_index + duration_index
center_len = float(p_xmax - p_xmin) + 1
sample_xmin = p_xmin - center_len * self.expand_ratio
sample_xmax = p_xmax + center_len * self.expand_ratio
anchors.append([k, sample_xmin, sample_xmax])
else:
anchors.append([k, 0, 0])
self.anchor_num = len(anchors) // self.bs
self.anchors = torch.tensor(np.stack(anchors)).float() # save to cpu
return # anchors, anchor_num
class GTAD(nn.Module):
def __init__(self, opt):
super(GTAD, self).__init__()
self.tscale = opt["temporal_scale"]
self.feat_dim = opt["feat_dim"]
self.bs = opt["batch_size"]
self.h_dim_1d = opt["h_dim_1d"]
self.h_dim_2d = opt["h_dim_2d"]
self.h_dim_3d = opt["h_dim_3d"]
self.goi_style = opt['goi_style']
self.h_dim_goi = self.h_dim_1d*(32,32+4,32+4)[opt['goi_style']]
self.idx_list = []
# Backbone Part 1
self.backbone1 = nn.Sequential(
nn.Conv1d(self.feat_dim, self.h_dim_1d, kernel_size=3, padding=1, groups=4),
nn.ReLU(inplace=True),
GCNeXt(self.h_dim_1d, self.h_dim_1d, k=3, groups=32, idx=self.idx_list),
)
# Regularization
self.regu_s = nn.Sequential(
GCNeXt(self.h_dim_1d, self.h_dim_1d, k=3, groups=32),
nn.Conv1d(self.h_dim_1d, 1, kernel_size=1), nn.Sigmoid()
)
self.regu_e = nn.Sequential(
GCNeXt(self.h_dim_1d, self.h_dim_1d, k=3, groups=32),
nn.Conv1d(self.h_dim_1d, 1, kernel_size=1), nn.Sigmoid()
)
# Backbone Part 2
self.backbone2 = nn.Sequential(
GCNeXt(self.h_dim_1d, self.h_dim_1d, k=3, groups=32,idx=self.idx_list),
)
# SGAlign: sub-graph of interest alignment
self.goi_align = GraphAlign(
t=self.tscale, d=opt['max_duration'], bs=self.bs,
samp=opt['goi_samp'], style=opt['goi_style'] # for ablation
)
# Localization Module
self.localization = nn.Sequential(
nn.Conv2d(self.h_dim_goi, self.h_dim_3d, kernel_size=1), nn.ReLU(inplace=True),
nn.Conv2d(self.h_dim_3d, self.h_dim_2d, kernel_size=1), nn.ReLU(inplace=True),
nn.Conv2d(self.h_dim_2d, self.h_dim_2d, kernel_size=opt['kern_2d'], padding=opt['pad_2d']), nn.ReLU(inplace=True),
nn.Conv2d(self.h_dim_2d, self.h_dim_2d, kernel_size=opt['kern_2d'], padding=opt['pad_2d']), nn.ReLU(inplace=True),
nn.Conv2d(self.h_dim_2d, 2, kernel_size=1), nn.Sigmoid()
)
# Position encoding (not useful)
# self.pos = torch.arange(0, 1, 1.0 / self.tscale).view(1, 1, self.tscale)
# self.pos = PositionalEncoding(self.feat_dim, dropout=0.1, max_len=self.tscale)
# Attention blocks
self.U_v = nn.Sequential(
nn.Linear(512, 512),
nn.Tanh(),
nn.Linear(512, 512),
)
self.U_a = nn.Sequential(
nn.Linear(512, 512),
nn.Tanh(),
nn.Linear(512, 512),
)
def TBMRF_block(self, audio, video, nb_block):
for i in range(nb_block):
video_residual = video
v = self.U_v(video)
audio_residual = audio
a = self.U_a(audio)
merged = torch.mul(v + a, 0.5)
a_trans = audio_residual
v_trans = video_residual
video = nn.Tanh()(a_trans + merged)
audio = nn.Tanh()(v_trans + merged)
return torch.mul(video + audio, 0.5)
def forward(self, snip_feature):
del self.idx_list[:] # clean the idx list
# snip_feature = self.pos(snip_feature)
# Attention
snip_feature = torch.transpose(snip_feature, 1, 2)
audioF = torch.zeros(snip_feature.shape[0], snip_feature.shape[1], 512).cuda()
audioF[:, :, :128] = snip_feature[:, :, 512:].cuda()
videoF = snip_feature[:, :, :512].cuda()
snip_feature = torch.transpose(self.TBMRF_block(audioF, videoF, 1), 1, 2)
base_feature = self.backbone1(snip_feature).contiguous() # (bs, 2048, 256) -> (bs, 256, 256)
gcnext_feature = self.backbone2(base_feature) #
regu_s = self.regu_s(base_feature).squeeze(1) # start
regu_e = self.regu_e(base_feature).squeeze(1) # end
if self.goi_style==2:
idx_list = [idx for idx in self.idx_list if idx.device == snip_feature.device]
idx_list = torch.cat(idx_list, dim=2)
else:
idx_list = None
subgraph_map = self.goi_align(gcnext_feature, idx_list)
iou_map = self.localization(subgraph_map)
return iou_map, regu_s, regu_e
if __name__ == '__main__':
from gtad_lib import opts
# from torchsummary import summary
opt = opts.parse_opt()
opt = vars(opt)
model = GTAD(opt).cuda()
model = torch.nn.DataParallel(model, device_ids=[0])
input = torch.randn(4, 640, 100).cuda()
a, b, c = model(input)
print(a.shape, b.shape, c.shape)
# summary(model, (400,100))
'''
Total params: 9,495,428
Trainable params: 9,495,428
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.15
Forward/backward pass size (MB): 1398.48
Params size (MB): 36.22
Estimated Total Size (MB): 1434.85
'''